OFFSET
0,2
COMMENTS
This generalized function is related to two following identities; R(q^5) - q - q^2/R(q^5) = (q; q)_{infinity}/(q^25; q^25)_{infinity}, R^5(q^5) - 11*q^5 - q^10/R^5(q^5) = ((q^5; q^5)_{infinity}/(q^25; q^25)_{infinity})^6, where R(q) is the Rogers-Ramanujan continued function and (q; q)_n is the q-Pochhammer symbol. See the reference.
REFERENCES
G. E. Andrews and B. C. Berndt, Ramanujan's lost notebook, Part III, Springer, New York, 2012, See p. 185.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..1000
Eric Weisstein's World of Mathematics, Rogers-Ramanujan Continued Fraction
FORMULA
G.f.: Product_{n>=1} (1 - q^n)^6/(1 - q^(5*n)).
a(n) = (-1)^j mod 5 if n = j*(3*j - 1)/2 for all j in Z; otherwise a(n) = 0 mod 5.
Sum_{k=0..n} a(k)*A182821(n-k) = 0 for n > 0. - Seiichi Manyama, Feb 28 2017
G.f.: exp( Sum_{n>=1} -sigma(5*n)*q^n/n ). - Seiichi Manyama, Mar 04 2017
a(n) = -(1/n)*Sum_{k=1..n} sigma(5*k)*a(n-k). - Seiichi Manyama, Mar 04 2017
EXAMPLE
G.f.: 1 - 6*q + 9*q^2 + 10*q^3 - 30*q^4 + q^5 + 5*q^6 + 51*q^7 + ...
MATHEMATICA
CoefficientList[Series[Product[(1 - x^j)^6/(1 - x^(5*j)), {j, 1, 62}], {x, 0, 60}], x] (* G. C. Greubel, Nov 18 2018 *)
PROG
(PARI) m=60; x='x+O('x^m); Vec(prod(j=1, m+2, (1 - x^j)^6/(1 - x^(5*j)))) \\ G. C. Greubel, Nov 18 2018
(Magma) m:=60; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1 - x^j)^6/(1 - x^(5*j)): j in [1..(m+2)]]) )); // G. C. Greubel, Nov 18 2018
(Sage)
R = PowerSeriesRing(ZZ, 'x')
prec = 60
x = R.gen().O(prec)
s = prod((1 - x^j)^6/(1 - x^(5*j)) for j in (1..prec))
print(s.coefficients()) # G. C. Greubel, Nov 18 2018
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Feb 25 2017
STATUS
approved