login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107033
Expansion of f(x, x) * f(x, -x^2) in powers of x where f(,) is a Ramanujan theta function.
1
1, 3, 1, -2, 2, 1, -4, -1, -2, 0, 2, -4, -1, -2, -2, 1, 0, 2, -2, 2, 0, -4, 1, 0, 2, 2, 5, 0, -2, 0, 0, 4, -2, 0, 0, 3, 4, 0, 0, 2, 1, -4, 2, -2, 0, 0, 0, 2, -2, 0, 2, 3, -2, 0, -2, -2, -4, -1, 0, 0, 0, -4, 2, 0, 4, 0, -4, -2, 0, -2, -1, 0, 0, -2, -2, 2, -6, 1, 2, 0, 0, 4, 0, -2, 2, 0, 0, -2, -2, -2, 2, 0, 1, 0, 0, -2, 4, 0, 0, 2, 1, 6, 0, 2, 0
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339, see page 333.
H. Kahl, G. Koehler, Components of Hecke theta series, J. Math. Anal. Appl. 232 (1999), no. 2, 312-331, see page 320. MR1683136 (2000e:11051)
LINKS
FORMULA
Expansion of f(sqrt(-x)) * f(-sqrt(-x)) in powers of x where f() is a Ramanujan theta function. - Michael Somos, Aug 23 2010
Expansion of f(x) * phi(x) in powers of x where f() and phi() are Ramanujan theta functions. - Michael Somos, Aug 23 2010
Expansion of q^(-1/24) * eta(q^2)^8 / (eta(q)^3 * eta(q^4)^3) in powers of q.
Euler transform of period 4 sequence [ 3, -5, 3, -2, ...].
G.f.: Product_{k>0} (1 - x^(2*k))^2 * (1 + x^k)^3 / (1 + x^(2*k))^3.
a(n) = (-1)^n * A115110(n).
EXAMPLE
1 + 3*x + x^2 - 2*x^3 + 2*x^4 + x^5 - 4*x^6 - x^7 - 2*x^8 + 2*x^10 + ...
q + 3*q^25 + q^49 - 2*q^73 + 2*q^97 + q^121 - 4*q^145 - q^169 - 2*q^193 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ I x] QPochhammer[ -I x], {x, 0, 2 n}] (* Michael Somos, Jul 12 2012 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ -x] EllipticTheta[ 3, 0, x], {x, 0, n}] (* Michael Somos, Jul 12 2012 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ x^2]^2 QPochhammer[ -x, x]^3 / QPochhammer[ -x^2, x^2]^3, {x, 0, n}] (* Michael Somos, Jul 12 2012 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^8 / (eta(x + A)^3 * eta(x^4 + A)^3), n))}
CROSSREFS
Cf. A115110.
Sequence in context: A296518 A111951 A222593 * A115110 A066635 A016568
KEYWORD
sign
AUTHOR
Michael Somos, May 09 2005
STATUS
approved