OFFSET
0,2
COMMENTS
This sequence is related to A085461 by 3*A085461(n) = n*a(n) - Sum_{i=0..n-1} a(i) for n>0. - Bruno Berselli, Dec 27 2010
Subsequence of the triangular numbers A000217, see formulas below. - David James Sycamore, Jul 31 2018
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..5000
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
From Bruno Berselli, Dec 27 2010: (Start)
G.f.: 3*x*(1 + x)^2/(1 - x)^5.
a(n) = Sum_{i=1..n*(n+1)} i. - Wesley Ivan Hurt, Sep 27 2013
a(n) = Sum_{i=0..n} i*(2*i^2+1), and these are the partial sums of A061317. - Bruno Berselli, Feb 09 2017
a(n) = t(n,t(n,A000217(n))), where t(n,k) = n*(n+1)/2 + k*n and k=0. - Bruno Berselli, Feb 28 2017
E.g.f.: (x/2)*(6 + 15*x + 8*x^2 + x^3)*exp(x). - G. C. Greubel, Aug 24 2017
a(n) = A000217(n*(n+1)). - David James Sycamore, Jul 31 2018
a(n) = 3*A006325(n+1) .- R. J. Mathar, Mar 23 2021
MAPLE
MATHEMATICA
Table[n (n + 1) (n^2 + n + 1)/2, {n, 0, 100}] (* Wesley Ivan Hurt, Sep 27 2013 *)
CoefficientList[Series[-3 x (x^2 + 2 x + 1)/(x - 1)^5, {x, 0, 36}], x] (* or *)
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 3, 21, 78, 210}, 36] (* Robert G. Wilson v, Jul 31 2018 *)
PROG
(Magma)[n*(n+1)*(n^2+n+1)/2: n in [0..40]]; // Vincenzo Librandi, Dec 26 2010
(PARI) a(n)=n*(n+1)*(n^2+n+1)/2 \\ Charles R Greathouse IV, Oct 16 2015
(GAP) List([0..40], n->n*(n+1)*(n^2+n+1)/2); # Muniru A Asiru, Aug 02 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Jul 21 2005
STATUS
approved