login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108775
a(n) = floor(sigma(n)/n).
8
1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1
OFFSET
1,6
COMMENTS
The sequence is unbounded. - Vrabec
First occurrence of k: 1,6,120,27720,..., which is A023199. - Robert G. Wilson v, Jun 28 2005
a(n) > 1 if n is perfect or abundant. a(n) = 2 if n is perfect or primitive abundant (see A091191). - Alonso del Arte, Feb 06 2012
REFERENCES
W. Sierpinski, Elementary Theory of Numbers, 1987, p. 174 ff.
LINKS
FORMULA
a(n) = floor(A017665(n)/A017666(n)). - Michel Marcus, Sep 18 2015
EXAMPLE
a(6) = 2 because sigma(6)/6 = (1 + 2 + 3 + 6)/6 = 2.
MATHEMATICA
Table[ Floor[ DivisorSigma[1, n]/n], {n, 105}] (* Robert G. Wilson v, Jun 28 2005 *)
PROG
(Haskell)
a108775 n = div (a000203 n) n -- Reinhard Zumkeller, Mar 23 2013
(PARI) a(n) = sigma(n)\n; \\ Michel Marcus, Sep 18 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Franz Vrabec, Jun 27 2005
EXTENSIONS
More terms from Robert G. Wilson v, Jun 28 2005
STATUS
approved