Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Sep 18 2015 08:19:17
%S 1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,2,1,1,1,2,1,1,1,2,1,2,1,1,1,1,
%T 1,2,1,1,1,2,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,2,1,1,1,2,1,1,1,1,1,2,1,1,
%U 1,2,1,2,1,1,1,1,1,2,1,2,1,1,1,2,1,1,1,2,1,2,1,1,1,1,1,2,1,1,1,2,1,2,1,2,1
%N a(n) = floor(sigma(n)/n).
%C The sequence is unbounded. - Vrabec
%C First occurrence of k: 1,6,120,27720,..., which is A023199. - _Robert G. Wilson v_, Jun 28 2005
%C a(n) > 1 if n is perfect or abundant. a(n) = 2 if n is perfect or primitive abundant (see A091191). - _Alonso del Arte_, Feb 06 2012
%D W. Sierpinski, Elementary Theory of Numbers, 1987, p. 174 ff.
%H Reinhard Zumkeller, <a href="/A108775/b108775.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = floor(A017665(n)/A017666(n)). - _Michel Marcus_, Sep 18 2015
%e a(6) = 2 because sigma(6)/6 = (1 + 2 + 3 + 6)/6 = 2.
%t Table[ Floor[ DivisorSigma[1, n]/n], {n, 105}] (* _Robert G. Wilson v_, Jun 28 2005 *)
%o (Haskell)
%o a108775 n = div (a000203 n) n -- _Reinhard Zumkeller_, Mar 23 2013
%o (PARI) a(n) = sigma(n)\n; \\ _Michel Marcus_, Sep 18 2015
%Y Cf. A000203, A054024.
%Y Cf. A017665, A017666.
%K nonn
%O 1,6
%A _Franz Vrabec_, Jun 27 2005
%E More terms from _Robert G. Wilson v_, Jun 28 2005