login
A300826
a(n) = n/A125746(n), where A125746(n) gives the smallest divisor d of n such that the sum which includes d and all smaller divisors is >= n.
3
1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 2, 1
OFFSET
1,6
COMMENTS
Records occur at 1, 6, 24, 120, 240, 504, 1260, 2520, 5040, 15120, 50400, 55440, ... and they are 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, ...
LINKS
FORMULA
a(n) = n/A125746(n).
PROG
(PARI) A300826(n) = { my(k=0, s=0); fordiv(n, d, k++; s += d; if(s>=n, return(n/d))); };
CROSSREFS
Cf. A125746.
Cf. A005100 (positions of ones), A023196 (positions of terms > 1).
Sequence in context: A073700 A226957 A108775 * A373126 A334926 A305936
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 21 2018
STATUS
approved