login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102029
Smallest semiprime with Hamming weight n (i.e., smallest semiprime with exactly n ones when written in binary), or -1 if no such number exists.
2
4, 6, 14, 15, 55, 95, 247, 447, 511, 1535, 2047, 7167, 12287, 32255, 49151, 98303, 196607, 393215, 983039, 1572863, 3145727, 6291455, 8388607, 33423359, 50331647, 117440511, 201326591, 528482303, 805306367, 1879048191, 3221225471
OFFSET
1,1
COMMENTS
Semiprime analog of A061712. Extended by Stefan Steinerberger. Includes the subset Mersenne semiprimes A092561.
LINKS
EXAMPLE
a(1) = 4 because the first semiprime A001358(1) is 4 (base 10) which is written 100 in binary, the latter representation having exactly 1 one.
a(2) = 6 since A001358(2) = 6 = 110 (base 2) has exactly 2 ones.
a(4) = 15 since A001358(6) = 15 = 1111 (base 2) has exactly 4 ones and, as it also has no zeros, is the smallest of the Mersenne semiprimes.
MATHEMATICA
Join[{4}, Table[SelectFirst[Sort[FromDigits[#, 2]&/@Permutations[ Join[ PadRight[{}, n, 1], {0}]]], PrimeOmega[#]==2&], {n, 2, 40}]] (* Harvey P. Dale, Feb 06 2015 *)
KEYWORD
easy,base,nonn
AUTHOR
Jonathan Vos Post, Jun 23 2007
STATUS
approved