|
|
A102027
|
|
Indices of primes in sequence defined by A(0) = 13, A(n) = 10*A(n-1) + 43 for n > 0.
|
|
1
|
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Numbers n such that (160*10^n - 43)/9 is prime.
Numbers n such that digit 1 followed by n >= 0 occurrences of digit 7 followed by digit 3 is prime.
Numbers corresponding to terms <= 184 are certified primes.
a(11) > 10^5. - Robert Price, Feb 11 2015
|
|
REFERENCES
|
Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.
|
|
LINKS
|
Table of n, a(n) for n=1..10.
Makoto Kamada, Prime numbers of the form 177...773.
Index entries for primes involving repunits.
|
|
FORMULA
|
a(n) = A102942(n) - 1.
|
|
EXAMPLE
|
173 is prime, hence 1 is a term.
|
|
PROG
|
(PARI) a=13; for(n=0, 1500, if(isprime(a), print1(n, ", ")); a=10*a+43)
(PARI) for(n=0, 1500, if(isprime((160*10^n-43)/9), print1(n, ", ")))
|
|
CROSSREFS
|
Cf. A000533, A002275, A102942.
Sequence in context: A294459 A075927 A119617 * A031294 A147129 A173825
Adjacent sequences: A102024 A102025 A102026 * A102028 A102029 A102030
|
|
KEYWORD
|
nonn,hard,more
|
|
AUTHOR
|
Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 28 2004
|
|
EXTENSIONS
|
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
a(10) from Robert Price, Feb 11 2015
|
|
STATUS
|
approved
|
|
|
|