login
A098829
Decimal expansion of the infinite sum: each n-th prime number A000040(n) divided by each n-th Fibonacci number A000045(n), from n=1.
0
1, 8, 2, 0, 7, 1, 7, 3, 3, 8, 8, 1, 1, 2, 7, 8, 3, 7, 9, 8, 6, 1, 3, 3, 6, 9, 7, 3, 5, 0, 6, 1, 5, 9, 1, 2, 8, 8, 6, 7, 8, 8, 8, 2, 9, 5, 5, 1, 4, 9, 8, 9, 4, 1, 3, 3, 6, 7, 9, 6, 4, 1, 8, 3, 8, 7, 3, 7, 0, 3, 9, 6, 7, 4, 3, 6, 4, 5, 7, 9, 6, 4, 3, 2, 2, 7, 3, 3, 0, 7, 2, 7, 0, 3, 5, 1, 9, 5, 2, 7, 8, 8, 2, 5, 6
OFFSET
2,2
EXAMPLE
18.207173388112783798613369735061591288678882955149894133679641838737...
MAPLE
A000040:=n->ithprime(n); A000045:=n->(1/sqrt(5))*(((1+sqrt(5))/2)^n-(2/(1+sqrt(5)))^n*cos(n*Pi)); evalf[82](sum(A000040(k)/A000045(k), k=1..5000)); evalf[82](sum(A000040(k)/A000045(k), k=1..10000));
MATHEMATICA
s = 0; Do[s = N[s + Prime[n]/Fibonacci[n], 128], {n, 10^3}]; RealDigits[s, 10, 105][[1]] (* Robert G. Wilson v, Nov 04 2004 *)
RealDigits[Total[Table[Prime[n]/Fibonacci[n], {n, 5000}]], 10, 120][[1]] (* Harvey P. Dale, Feb 19 2018 *)
PROG
(PARI) suminf(n=1, prime(n)/fibonacci(n)) \\ Charles R Greathouse IV, Aug 07 2012
CROSSREFS
Sequence in context: A344362 A182170 A011105 * A190404 A243433 A080729
KEYWORD
cons,nonn
AUTHOR
Joseph Biberstine (jrbibers(AT)indiana.edu), Nov 02 2004
EXTENSIONS
More terms from Robert G. Wilson v, Nov 04 2004
STATUS
approved