OFFSET
1,3
COMMENTS
According to Bach and Shallit (1996), Sum_{j=1..n} prime(j) ~ n^2*log(n)/2. Consequently, the function 2*(Sum_{j=1..n} prime(j))/(n^2*log(n)) tends to 1 as n tends to infinity; however, it has a maximum value of 1.0820514... when n=341276. In precise terms this constant is 802812394173*2/(341276^2*log(341276)) and it provides an upper bound for Sum_{j=1..n} prime(j) <= (802812394173*2/(341276^2*log(341276)))*n^2*log(n)/2 for all n >= 15. The prime sums tables of R. J. Mathar, A007504 show that a maximum for C occurs between n=200000 and n=400000. Further refinement gives the maximum value of C at n=341276 where the sum of primes from 2 through to 4889407, inclusively, gives 802812394173.
REFERENCES
E. Bach and J. Shallit, Section 2.7 in Algorithmic Number Theory, Vol. 1: Efficient Algorithms, Cambridge, MIT Press, 1996.
LINKS
Eric Weisstein's World of Mathematics, Prime Sums.
FORMULA
C = 802812394173*2/(341276^2*log(341276)).
EXAMPLE
1.0820514451923950650336815288978985575393063847...
MATHEMATICA
table=Table[2Sum[Prime[i], {i, 1, n}]/(n^2Log[n]), {n, 341200, 341400}]; max=Max[table]; n=1; While[table[[n]]!=max, n++]; Print[N[max, 100], " at n = ", n-1+341200]
PROG
(PARI) 1605624788346/(341276^2*log(341276)) \\ Charles R Greathouse IV, Apr 16 2012
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Frank M Jackson, Apr 16 2012
STATUS
approved