|
|
A080729
|
|
Decimal expansion of the infinite product of zeta functions for even arguments.
|
|
3
|
|
|
1, 8, 2, 1, 0, 1, 7, 4, 5, 1, 4, 9, 9, 2, 9, 2, 3, 9, 0, 4, 0, 6, 7, 2, 5, 1, 3, 2, 2, 2, 6, 0, 0, 6, 8, 4, 8, 5, 7, 8, 2, 6, 8, 0, 2, 8, 6, 4, 8, 2, 7, 1, 7, 5, 5, 0, 0, 2, 0, 9, 3, 8, 0, 0, 2, 8, 6, 0, 6, 5, 8, 8, 6, 7, 7, 0, 5, 4, 8, 8, 9, 3, 6, 3, 9, 6, 0, 2, 4, 9, 7, 5, 2, 1, 4, 5, 2, 9, 7, 6, 6, 1, 0, 9, 9
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 658.
|
|
FORMULA
|
Decimal expansion of zeta(2)*zeta(4)*...*zeta(2k)*...
If u(k) denotes the number of Abelian groups with group order k, then prod(k>=1, zeta(2*k))=sum(k>=1, u(k)/k^2). - Benoit Cloitre, Jun 25 2003
|
|
EXAMPLE
|
The value to 39 decimal places (calculated by Mathematica) is 1.82101745149929239040672513222600684857...
|
|
MATHEMATICA
|
RealDigits[Product[Zeta[2n], {n, 500}], 10, 110][[1]] (* Harvey P. Dale, Jan 31 2012 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
Deepak R. N (deepak_rn(AT)safe-mail.net), Mar 08 2003
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|