login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A243433 Decimal expansion of c = twice the maximum of Dawson's integral, a constant used in the asymptotic evaluation of the ideal hyperbolic n-cube volume. 6
1, 0, 8, 2, 0, 8, 8, 4, 4, 9, 2, 7, 0, 3, 6, 3, 3, 9, 6, 9, 4, 5, 5, 1, 8, 6, 6, 0, 4, 8, 2, 9, 5, 4, 3, 7, 2, 7, 8, 1, 2, 0, 9, 3, 5, 3, 6, 5, 3, 6, 5, 1, 7, 7, 4, 9, 1, 2, 7, 0, 8, 4, 3, 3, 8, 1, 6, 8, 4, 1, 1, 1, 7, 5, 9, 6, 2, 9, 3, 9, 5, 0, 6, 2, 8, 7, 8, 3, 8, 2, 0, 4, 2, 6, 4, 5, 5, 5, 4, 2 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Equals the inverse of the position xm of the Dawson integral maximum, and also the negative of the second derivative of the Dawson integral at xm. - Stanislav Sykora, Sep 17 2014

REFERENCES

Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 8.9 Hyperbolic volume constants, p. 512.

LINKS

Stanislav Sykora, Table of n, a(n) for n = 1..2000

Eric Weisstein's MathWorld, Dawson's Integral

Wikipedia, Dawson function

FORMULA

Volume(n) ~ 2*sqrt(Pi)*c^n/GAMMA((n+1)/2), where GAMMA is the Euler gamma function.

Equals 1/A133841 = 2*A133842.- Stanislav Sykora, Sep 17 2014

EXAMPLE

1.0820884492703633969455186604829543727812...

MATHEMATICA

digits = 100; DawsonF[x_] := Sqrt[Pi]*Erfi[x]/(2*Exp[x^2]); c = 2*DawsonF[x] /. FindRoot[DawsonF'[x], {x, 1}, WorkingPrecision -> digits+5]; RealDigits[c, 10, digits] // First

PROG

(PARI) Erfi(z) = -I*(1.0-erfc(I*z));

Dawson(z) = 0.5*sqrt(Pi)*exp(-z*z)*Erfi(z);

DDawson(z) = 1.0 - 2*z*Dawson(z); \\ Derivative of the above

x = 1.0/solve(z=0.1, 2.0, real(DDawson(z))) \\ Stanislav Sykora, Sep 17 2014

CROSSREFS

Cf. A133841, A133842.

Sequence in context: A011105 A098829 A190404 * A080729 A262080 A164800

Adjacent sequences:  A243430 A243431 A243432 * A243434 A243435 A243436

KEYWORD

nonn,cons

AUTHOR

Jean-Fran├žois Alcover, Jun 05 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 20 22:22 EDT 2019. Contains 322310 sequences. (Running on oeis4.)