login
A243434
Decimal expansion of c*sqrt(e/2), a constant associated with Dawson's integral and the asymptotic evaluation of the ideal hyperbolic n-cube volume, where c is A243433, twice the maximum of Dawson's integral.
1
1, 2, 6, 1, 5, 2, 2, 5, 1, 0, 1, 4, 8, 5, 0, 3, 9, 2, 9, 7, 0, 5, 0, 9, 1, 1, 0, 9, 1, 6, 2, 6, 9, 3, 9, 5, 3, 3, 8, 4, 0, 1, 2, 7, 4, 5, 4, 4, 3, 7, 1, 5, 4, 3, 0, 0, 1, 0, 7, 6, 9, 1, 3, 6, 3, 5, 3, 2, 0, 5, 5, 6, 9, 3, 4, 3, 6, 2, 4, 8, 4, 2, 5, 3, 8, 1, 0, 2, 4, 8, 6, 1, 0, 2, 0, 6, 0, 0, 6, 4
OFFSET
1,2
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 8.9 Hyperbolic volume constants, p. 512.
LINKS
Eric Weisstein's MathWorld, Dawson's Integral
EXAMPLE
1.261522510148503929705091109162693953384...
MATHEMATICA
digits = 100; DawsonF[x_] := Sqrt[Pi]*Erfi[x]/(2*Exp[x^2]); c = 2*DawsonF[x] /. FindRoot[DawsonF'[x], {x, 1}, WorkingPrecision -> digits + 5]; RealDigits[c*Sqrt[E/2], 10, digits] // First
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved