The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A243434 Decimal expansion of c*sqrt(e/2), a constant associated with Dawson's integral and the asymptotic evaluation of the ideal hyperbolic n-cube volume, where c is A243433, twice the maximum of Dawson's integral. 1
 1, 2, 6, 1, 5, 2, 2, 5, 1, 0, 1, 4, 8, 5, 0, 3, 9, 2, 9, 7, 0, 5, 0, 9, 1, 1, 0, 9, 1, 6, 2, 6, 9, 3, 9, 5, 3, 3, 8, 4, 0, 1, 2, 7, 4, 5, 4, 4, 3, 7, 1, 5, 4, 3, 0, 0, 1, 0, 7, 6, 9, 1, 3, 6, 3, 5, 3, 2, 0, 5, 5, 6, 9, 3, 4, 3, 6, 2, 4, 8, 4, 2, 5, 3, 8, 1, 0, 2, 4, 8, 6, 1, 0, 2, 0, 6, 0, 0, 6, 4 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 8.9 Hyperbolic volume constants, p. 512. LINKS G. C. Greubel, Table of n, a(n) for n = 1..5000 Eric Weisstein's MathWorld, Dawson's Integral EXAMPLE 1.261522510148503929705091109162693953384... MATHEMATICA digits = 100; DawsonF[x_] := Sqrt[Pi]*Erfi[x]/(2*Exp[x^2]); c = 2*DawsonF[x] /. FindRoot[DawsonF'[x], {x, 1}, WorkingPrecision -> digits + 5]; RealDigits[c*Sqrt[E/2], 10, digits] // First CROSSREFS Cf. A133841, A133842, A243433. Sequence in context: A220406 A220794 A220959 * A265416 A199953 A076039 Adjacent sequences:  A243431 A243432 A243433 * A243435 A243436 A243437 KEYWORD nonn,cons AUTHOR Jean-François Alcover, Jun 05 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 13 02:36 EDT 2021. Contains 343836 sequences. (Running on oeis4.)