|
|
A080732
|
|
Smallest distance from n to a prime power (as defined in A246655).
|
|
4
|
|
|
1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 2, 2, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 3, 2, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,21
|
|
COMMENTS
|
a(n)=min (abs(n-k) : where k runs through the prime powers)
|
|
LINKS
|
|
|
MATHEMATICA
|
nn = 100; pp = Select[Range[2, Prime[1 + PrimePi[nn]]], Length[FactorInteger[#]] == 1 &]; Table[Min[Abs[n - pp]], {n, nn}] (* T. D. Noe, Mar 14 2012 *)
|
|
CROSSREFS
|
There are four different sequences which may legitimately be called "prime powers": A000961 (p^k, k >= 0), A246655 (p^k, k >= 1), A246547 (p^k, k >= 2), A025475 (p^k, k=0 and k >= 2). When you refer to "prime powers", be sure to specify which of these you mean. - N. J. A. Sloane, Mar 24 2018
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|