login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098830
3*Sum_{k>=0} k^n/binomial(2*k, k) = Pi*sqrt(3)*q(n) + a(n) for some rational sequence (q(n)).
4
0, 1, 2, 4, 10, 32, 126, 588, 3170, 19384, 132550, 1002212, 8301930, 74767056, 727348814, 7601002876, 84920459890, 1010058659048, 12742908917718, 169962226236180, 2389587638934650, 35321010036943360, 547577222471444062
OFFSET
-1,3
COMMENTS
For n >= 0, this appears to be the number of permutations on n+1 elements having the "ascending-to-max" property (see He et al., Definition 2.1). - Nathaniel Johnston, Apr 10 2011
a(n) is the number of permutations of [n] in which the excedance entries are precisely the entries to the left of 1. For example a(3) = 4 counts 123, 213, 231, 312, but does not count 132 because 3 is an excedance not to the left of 1, or 321 because 2 is not an excedance. See link at A099594. - David Callan, Dec 14 2021
LINKS
Beata Bényi and Peter Hajnal, Combinatorial properties of poly-Bernoulli relatives, arXiv preprint arXiv:1602.08684 [math.CO], 2016.
Beáta Bényi and Toshiki Matsusaka, Extensions of the combinatorics of poly-Bernoulli numbers, arXiv:2106.05585 [math.CO], 2021.
Beáta Bényi and Toshiki Matsusaka, Remarkable relations between the central binomial series, Eulerian polynomials, and poly-Bernoulli numbers, Kyushu J. Math. 77 (2023), 149-158. On arXiv, arXiv:2207.00205 [math.NT], 2022.
FORMULA
a(n) = Sum_{k=0..n} Sum_{j=0..n-k} (j+1)^k*Sum_{i=0..j} (-1)^(n-k+j-i)*C(j, i)*(j-i)^(n-k). - Paul D. Hanna, Nov 03 2004
a(n) ~ Pi * n^(n+1) / (exp(n) * 2^n * (log(2))^(n+3/2)). - Vaclav Kotesovec, Sep 08 2014
E.g.f: 12*exp(x/2)*(arcsin(exp(x/2)/2)-Pi/6)/(4-exp(x))^(3/2) + 12/(4-exp(x)) - 3. - Robert Israel, Nov 27 2014
a(n) = Sum_{k=0..n} Sum_{m=0..k} (-1)^(k+m)*(m+1)^(n-k)*m!*Stirling2(k,m). - Vladimir Reshetnikov, Dec 17 2015
EXAMPLE
3*Sum_{k>=0} k^3/binomial(2k, k) = (238/81)*Pi*sqrt(3) + 32, hence a(4)=32.
MAPLE
egf:= 12*exp(x/2)*(arcsin(exp(x/2)/2)-Pi/6)/(4-exp(x))^(3/2) + 12/(4-exp(x)) - 3:
S:= series(egf, x, 101):
0, seq(coeff(S, x, j)*j!, j=0..100); # Robert Israel, Nov 27 2014
a := proc(n) option remember; if n < 0 then 0 else
1 + (2*a(n-1) + add(binomial(n, k)*a(k), k = 0..n-1))/3 fi end:
seq(a(n), n = -1..21); # Peter Luschny, Aug 01 2021
MATHEMATICA
a[n_] := Sum[(j+1)^k*Sum[(-1)^(n-k+j-i)*If[i == j && n == k, 1, (j-i)^(n-k)]*Binomial[j, i], {i, 0, j}], {k, 0, n}, {j, 0, n-k}]; Table[a[n], {n, -1, 21}] (* Jean-François Alcover, Jan 22 2014, after Paul D. Hanna *)
Table[Sum[(-1)^(k+m) (m+1)^(n-k) m! StirlingS2[k, m], {k, 0, n}, {m, 0, k}], {n, -1, 20}] (* Vladimir Reshetnikov, Dec 17 2015 *)
PROG
(PARI) {a(n)=sum(k=0, n, sum(j=0, n-k, (j+1)^k*sum(i=0, j, (-1)^(n-k+j-i)*binomial(j, i)*(j-i)^(n-k))))}
CROSSREFS
See also A181334 and A185585.
Antidiagonal sums of array in A099594. - Ralf Stephan, Oct 28 2004
Sequence in context: A263665 A001250 A013032 * A121277 A009284 A105557
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Oct 09 2004
STATUS
approved