login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096470
Triangle T(n,k), read by rows, formed by setting all entries in the zeroth column and in the main diagonal ((n,n) entries) to 1 and defining the rest of the entries by the recursion T(n,k) = T(n-1,k) - T(n,k-1).
1
1, 1, 1, 1, 0, 1, 1, -1, 2, 1, 1, -2, 4, -3, 1, 1, -3, 7, -10, 11, 1, 1, -4, 11, -21, 32, -31, 1, 1, -5, 16, -37, 69, -100, 101, 1, 1, -6, 22, -59, 128, -228, 329, -328, 1, 1, -7, 29, -88, 216, -444, 773, -1101, 1102, 1, 1, -8, 37, -125, 341, -785, 1558, -2659, 3761, -3760, 1, 1, -9, 46, -171, 512, -1297, 2855, -5514, 9275, -13035, 13036, 1
OFFSET
0,9
COMMENTS
If A(x,y) is the bivariate o.g.f. of a triangular array T(n,k) and B(x,y) is the bivariate o.g.f. of its mirror image T(n,n-k), then B(x,y) = A(x*y, y^(-1)) and A(x,y) = B(x*y, y^(-1)). - Petros Hadjicostas, Aug 08 2020
FORMULA
T(n,k) = T(n-1,k) - T(n,k-1) for 1 <= k <= n-1 with T(n,0) = 1 = T(n,n) for n >= 0.
The 2nd column is T(n,2) = A000124(n-2) for n >= 2 (Hogben's central polygonal numbers).
The "first subdiagonal" (unsigned) is |T(n,n-1)| = A032357(n-1) for n >= 1 (Convolution of Catalan numbers and powers of -1).
The "2nd subdiagonal" (unsigned) is |T(n,n-2)| = A033297(n) = Sum_{i=0..n-2} (-1)^i*C(n-1-i) for n >= 2, where C(n) are the Catalan numbers (A000108).
From Petros Hadjicostas, Aug 08 2020: (Start)
|T(n,k)| = |A168377(n,n-k)| for 0 <= k <= n.
Bivariate o.g.f.: (1 + y + x*y*c(-x*y))/((1 - x*y)*(1 - x + y)), where c(x) = 2/(1 + sqrt(1 - 4*x)) = o.g.f. of A000108.
Bivariate o.g.f. of |T(n,k)|: (1 - y - x*y*c(x*y))/((1 + x*y)*(1 - x - y)) + 2*x*y/(1 - x^2*y^2).
Bivariate o.g.f. of mirror image T(n,n-k): (1 + y + x*y*c(-x))/((1 - x)*(1 + y - x*y^2)).
Bivariate o.g.f. of |T(n,n-k)|: (1 - y + x*y*c(x))/((1 + x)*(1 - y + x*y^2)) + 2*x/(1 - x^2). (End)
EXAMPLE
From Petros Hadjicostas, Aug 08 2020: (Start)
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
1;
1, 1;
1, 0, 1;
1, -1, 2, 1;
1, -2, 4, -3, 1;
1, -3, 7, -10, 11, 1;
1, -4, 11, -21, 32, -31, 1;
1, -5, 16, -37, 69, -100, 101, 1;
1, -6, 22, -59, 128, -228, 329, -328, 1;
... (End)
PROG
(PARI) T(n, k) = if ((k==0) || (n==k), 1, if ((n<0) || (k<0), 0, if (n>k, T(n-1, k) - T(n, k-1), 0)));
for(n=0, 10, for (k=0, n, print1(T(n, k), ", ")); print); \\ Petros Hadjicostas, Aug 08 2020
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Gerald McGarvey, Aug 12 2004
EXTENSIONS
Offset changed to 0 by Petros Hadjicostas, Aug 08 2020
STATUS
approved