

A096470


Triangle (read by rows) formed by setting all entries in the first column and in the main diagonal ((i,i) entries) to 1 and the rest of the entries by the recursion a(n,m) = a(n1,m)  a(n,m1).


1



1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 2, 4, 3, 1, 1, 3, 7, 10, 11, 1, 1, 4, 11, 21, 32, 31, 1, 1, 5, 16, 37, 69, 100, 101, 1, 1, 6, 22, 59, 128, 228, 329, 328, 1, 1, 7, 29, 88, 216, 444, 773, 1101, 1102, 1, 1, 8, 37, 125, 341, 785, 1558, 2659, 3761, 3760, 1, 1, 9, 46, 171, 512, 1297, 2855, 5514, 9275
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,9


COMMENTS

The 3rd column is A000124 (Hogben's central polygonal numbers.) The "first subdiagonal" ((i+1,i) entries, unsigned) is A032357 (Convolution of Catalan numbers and powers of 1.) The "2nd subdiagonal" ((i+2,i) entries, unsigned) is A033297 (formula is Sum((1)^i*C(n1i),i=0..n2), where C(n) are the Catalan numbers)


LINKS

Table of n, a(n) for n=1..75.


CROSSREFS

Cf. A000124, A032357, A033297, A000108.
Sequence in context: A260931 A293819 A027113 * A085143 A321029 A253473
Adjacent sequences: A096467 A096468 A096469 * A096471 A096472 A096473


KEYWORD

sign,tabl


AUTHOR

Gerald McGarvey, Aug 12 2004


STATUS

approved



