|
|
A096468
|
|
Perimeters of primitive Heronian triangles.
|
|
36
|
|
|
12, 16, 18, 30, 32, 36, 40, 42, 44, 48, 50, 54, 56, 60, 64, 66, 68, 70, 72, 76, 78, 80, 84, 90, 96, 98, 100, 104, 108, 110, 112, 114, 120, 126, 128, 130, 132, 136, 140, 144, 150, 152, 154, 156, 160, 162, 164, 168, 170, 172, 174, 176, 180, 182, 186, 190, 192, 196
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Here a primitive Heronian triangle has integer sides a,b,c with GCD(a,b,c) = 1 and integral area. The perimeter is always even. Cheney's article contains many theorems about these triangles.
|
|
LINKS
|
Wm. Fitch Cheney, Jr., Heronian Triangles, Amer. Math. Monthly, Vol. 36, No. 1 (Jan 1929), 22-28.
|
|
EXAMPLE
|
12 is on this list because the triangle with sides 3, 4, 5 has integral area and perimeter 12.
|
|
MATHEMATICA
|
nn=150; lst={}; Do[s=(a+b+c)/2; If[IntegerQ[s] && GCD[a, b, c]==1, area2=s(s-a)(s-b)(s-c); If[area2>0 && IntegerQ[Sqrt[area2]], AppendTo[lst, 2s]]], {a, nn}, {b, a}, {c, b}]; Union[lst]
|
|
CROSSREFS
|
Cf. A070138 (number of primitive Heronian triangles having perimeter n), A083875 (area/6 of primitive Heronian triangles), A096467 (longest side of primitive Heronian triangles).
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|