The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A096466 Triangle T(n,k), read by rows, formed by setting all entries in the zeroth column ((n,0) entries) and the main diagonal ((n,n) entries) to powers of 2 with all other entries formed by the recursion T(n,k) = T(n-1,k) + T(n,k-1). 0
 1, 2, 2, 4, 6, 4, 8, 14, 18, 8, 16, 30, 48, 56, 16, 32, 62, 110, 166, 182, 32, 64, 126, 236, 402, 584, 616, 64, 128, 254, 490, 892, 1476, 2092, 2156, 128, 256, 510, 1000, 1892, 3368, 5460, 7616, 7744, 256, 512, 1022, 2022, 3914, 7282, 12742, 20358, 28102, 28358, 512 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS T(n,k) = T(n-1,k) + T(n,k-1) for n >= 2 and 1 <= k <= n - 1 with T(n,0) = T(n,n) = 2^n for n >= 0. The n-th row sum equals A082590(n), which is the expansion of 1/(1 - 2*x)/sqrt(1 - 4*x) and equals 2^n * JacobiP(n, 1/2, -1-n, 3). First column is T(n,1) = A000918(n+1) = 2^(n+1) - 2. From Petros Hadjicostas, Aug 06 2020: (Start) T(n,2) = 2^(n+2) - 2*n - 8 for n >= 2. T(n+1,n) = 2^n + Sum_{k=0..n} T(n,k) = 2^n + A082590(n). Bivariate o.g.f.: ((1 - x)*(1 - y)/(1 - 2*x) - x*y/sqrt(1 - 4*x*y))/((1 - 2*x*y)*(1 - x - y)). (End) LINKS EXAMPLE From Petros Hadjicostas, Aug 06 2020: (Start) Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:    1;    2,   2;    4,   6,   4;    8,  14,  18,   8;   16,  30,  48,  56,  16;   32,  62, 110, 166, 182,  32;   64, 126, 236, 402, 584, 616, 64;   ... (End) PROG (PARI) T(n, k) = if ((k==0) || (n==k), 2^n, if ((n<0) || (k<0), 0, if (n>k, T(n-1, k) + T(n, k-1), 0))); for(n=0, 10, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Aug 07 2020 CROSSREFS Cf. A000918, A082590. Sequence in context: A318343 A318024 A320409 * A088965 A059474 A252828 Adjacent sequences:  A096463 A096464 A096465 * A096467 A096468 A096469 KEYWORD nonn,tabl AUTHOR Gerald McGarvey, Aug 12 2004 EXTENSIONS Offset changed to 0 by Petros Hadjicostas, Aug 06 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 06:42 EST 2021. Contains 349401 sequences. (Running on oeis4.)