login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320409
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 1, 2, 4 or 5 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.
7
1, 2, 2, 4, 6, 4, 8, 14, 14, 8, 16, 35, 47, 35, 16, 32, 95, 156, 156, 95, 32, 64, 257, 548, 786, 548, 257, 64, 128, 700, 1970, 3761, 3761, 1970, 700, 128, 256, 1907, 7049, 18725, 27236, 18725, 7049, 1907, 256, 512, 5202, 25364, 92578, 191615, 191615, 92578
OFFSET
1,2
COMMENTS
Table starts
...1....2.....4.......8.......16.........32..........64...........128
...2....6....14......35.......95........257.........700..........1907
...4...14....47.....156......548.......1970........7049.........25364
...8...35...156.....786.....3761......18725.......92578........463045
..16...95...548....3761....27236.....191615.....1353623.......9623424
..32..257..1970...18725...191615....1957026....19677729.....199877194
..64..700..7049...92578..1353623...19677729...282206549....4085687781
.128.1907.25364..463045..9623424..199877194..4085687781...84346447443
.256.5202.91307.2308299.68454701.2025592349.58997871413.1737667793009
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) +3*a(n-2) -2*a(n-3) -2*a(n-4) -a(n-6) +a(n-7)
k=3: [order 23] for n>25
k=4: [order 83] for n>85
EXAMPLE
Some solutions for n=5 k=4
..0..1..1..1. .0..0..0..0. .0..0..1..1. .0..0..0..0. .0..0..0..0
..1..1..0..0. .0..1..1..0. .0..1..1..1. .0..0..1..1. .1..0..0..1
..0..1..0..0. .1..0..0..1. .1..1..1..1. .1..0..1..1. .0..0..0..0
..1..0..1..0. .1..1..1..1. .0..0..0..0. .0..1..0..1. .0..0..1..0
..1..1..0..0. .1..1..0..1. .0..0..0..1. .0..0..0..1. .0..1..1..0
CROSSREFS
Column 1 is A000079(n-1).
Column 2 is A318018.
Sequence in context: A318075 A318343 A318024 * A096466 A088965 A059474
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Oct 12 2018
STATUS
approved