The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A059474 Triangle read by rows: T(n,k) is coefficient of z^n*w^k in 1/(1 - 2*z - 2*w + 2*z*w) read by rows in order 00, 10, 01, 20, 11, 02, ... 4
 1, 2, 2, 4, 6, 4, 8, 16, 16, 8, 16, 40, 52, 40, 16, 32, 96, 152, 152, 96, 32, 64, 224, 416, 504, 416, 224, 64, 128, 512, 1088, 1536, 1536, 1088, 512, 128, 256, 1152, 2752, 4416, 5136, 4416, 2752, 1152, 256, 512, 2560, 6784, 12160, 16032, 16032, 12160, 6784, 2560, 512 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Pascal-like triangle: start with 1 at top; every subsequent entry is the sum of everything above you, plus 1. LINKS G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened FORMULA G.f.: 1/(1 - 2*z - 2*w + 2*z*w). T(n, k) = Sum_{j=0..n} (-1)^j*2^(n + k - j)*C(n, j)*C(n + k - j, n). T(n, k) = 2^n*binomial(n, k)*hypergeom([-k, k - n], [-n], 1/2). - Peter Luschny, Nov 26 2021 EXAMPLE [0]  1; [1]  2,   2; [2]  4,   6,   4; [3]  8,  16,  16,   8; [4] 16,  40,  52,  40,  16; [5] 32,  96, 152, 152,  96,  32; [6] 64, 224, 416, 504, 416, 224, 64; ... MAPLE read transforms; SERIES2(1/(1-2*z-2*w+2*z*w), x, y, 12): SERIES2TOLIST(%, x, y, 12); # Alternative T := (n, k) -> 2^n*binomial(n, k)*hypergeom([-k, -n + k], [-n], 1/2): for n from 0 to 10 do seq(simplify(T(n, k)), k = 0 .. n) end do; # Peter Luschny, Nov 26 2021 MATHEMATICA T[n_, k_] := Sum[(-1)^j*2^(n + k - j)*Binomial[n, j]*Binomial[n + k - j, n], {j, 0, n}]; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Oct 04 2017 *) CROSSREFS See A059576 for a similar triangle. T(n,n) gives A084773. Column k=0 gives A000079. Sequence in context: A320409 A096466 A088965 * A252828 A208314 A078099 Adjacent sequences:  A059471 A059472 A059473 * A059475 A059476 A059477 KEYWORD nonn,tabl,easy,changed AUTHOR N. J. A. Sloane, Feb 03, 2001; revised Jun 12 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 14:10 EST 2021. Contains 349430 sequences. (Running on oeis4.)