OFFSET
1,2
COMMENTS
Conjecture: This sequence is infinite. a(n) = 1 if and only if n + 1 is in the sequence A004023, so a(1) = a(18) = a(22) = a(316) = a(1030) = a(49080) = a(86452) = 1 and there are no other n less than 86453 such that a(n) = 1. Every term of this sequence is odd and for each n, 5 doesn't divide a(n). a(50) is greater than 11111.
EXAMPLE
a(2) = 3 because 3^0 = 1, 3^1 = 3, and 3^2 = 9; 139 is prime and 3 is the smallest number that gives this result.
a(3) = 33 because 33^0 = 1; 33^1 = 33; 33^2 = 1089; 33^3 = 35937; 133108935937 is a prime and 33 is the smallest number that gives this result.
MATHEMATICA
snm[n_]:=Module[{m=1}, While[!PrimeQ[FromDigits[Flatten[ IntegerDigits/@ (m^Range[0, n])]]], m++]; m]; Array[snm, 50] (* Harvey P. Dale, Aug 10 2016 *)
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Farideh Firoozbakht, Jun 23 2004
EXTENSIONS
First example corrected by Harvey P. Dale, Aug 10 2016
STATUS
approved