login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A253473 a(n) = phi(c(n)) - tau(phi(c(n))), where c(n) is the n-th composite number. 2
0, 0, 1, 2, 1, 1, 2, 4, 4, 2, 4, 6, 6, 4, 14, 6, 12, 6, 4, 11, 14, 11, 16, 6, 12, 16, 11, 6, 14, 16, 18, 11, 34, 14, 26, 16, 12, 32, 16, 27, 22, 11, 22, 27, 26, 38, 14, 26, 38, 16, 16, 27, 32, 27, 48, 16, 26, 46, 32, 16, 57, 34, 48, 32, 16, 60, 38, 48, 42, 60 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

LINKS

Robert Israel, Table of n, a(n) for n = 1..10000

J. Ziegenbalg, Phi, Tau, Sigma in Elementary Number Theory

FORMULA

a(n) = A049820(A073256(n)). - Michel Marcus, Jan 08 2015

a(n) = A000010(A002808(n)) - A000005(A000010(A002808(n))). - Omar E. Pol, Nov 20 2016

EXAMPLE

For n=1: c(1) = 4. phi(4) = 2. tau(2)= 2, thus a(1) = 2 - 2 = 0.

For n=3: c(3) = 8. phi(8) = 4. tau(4)= 3, thus a(3) = 4 - 3 = 1.

For n=20: c(20) = 32. phi(32) = 16. tau(16) = 5, thus a(20) = 16 - 5 = 11.

MAPLE

comps:= remove(isprime, [$2..1000]):

map( ((t->t) - numtheory:-tau)@numtheory:-phi, comps); # Robert Israel, Nov 20 2016

MATHEMATICA

Composites := Select[Range[2, 10000], ! PrimeQ[#] &]; Composite[n_] := Last[Take[Composites, n]]; T[n_] := EulerPhi[n]; Table[T[Composite[n]] - DivisorSigma[0, T[Composite[n]]], {n, 200}]

PROG

(PARI) lista(nn) = {forcomposite(n=1, nn, ec = eulerphi(n); print1(ec - numdiv(ec), ", "); ); } \\ Michel Marcus, Jan 11 2015

CROSSREFS

Cf. A000005, A000010, A002808.

Sequence in context: A027113 A096470 A085143 * A026120 A108746 A119558

Adjacent sequences:  A253470 A253471 A253472 * A253474 A253475 A253476

KEYWORD

nonn,easy

AUTHOR

Carlos Eduardo Olivieri, Jan 02 2015

EXTENSIONS

Name clarified by Omar E. Pol, Nov 20 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 22 15:12 EST 2018. Contains 299454 sequences. (Running on oeis4.)