OFFSET
1,9
FORMULA
T(n, k) = det(f(i+j-1+k-n)_{i, j=1..n}) where f(n)=A007440(n).
T(n, k) = (-1)^[(n+k-1)/2]*T(k-1, n-1) if 1<=k<=n.
EXAMPLE
T(4,2)=0 since det([0,0,1,-1; 0,1,-1,0; 1,-1,0,2; -1,0,2,-3])=0.
1
-1 -1
-1 -1 -1
1 0 2 1
1 -2 4 3 1
-1 3 -11 -5 -5 -1
-1 -1 -34 10 -20 -8 -1
1 11 106 -116 96 44 13 1
1 15 368 -328 716 86 125 21 1
-1 13 -1324 -1344 -5634 1866 -1063 -316 -34 -1
MAPLE
A085143 := proc(n, k)
local A, r, c ;
A := Matrix(n, n) ;
for r from 1 to n do
for c from 1 to n do
A[r, c] := A007440(r+c-1+k-n) ;
end do:
end do:
Determinant(A) ;
end proc:
seq(seq(A085143(n, k), k=1..n), n=1..12) ; # R. J. Mathar, Jul 21 2023
PROG
(PARI) {f(n)=polcoeff((-1-x+sqrt(1+2*x+5*x^2+x^2*O(x^n)))/(2*x), n)} \\ A007440
{T(n, k)=matdet(matrix(n, n, i, j, f(i+j-1+k-n)))}
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Michael Somos, Jun 19 2003
STATUS
approved