login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085143
Triangle table from number wall of reversion of Fibonacci numbers.
2
1, -1, -1, -1, -1, -1, 1, 0, 2, 1, 1, -2, 4, 3, 1, -1, 3, -11, -5, -5, -1, -1, -1, -34, 10, -20, -8, -1, 1, 11, 106, -116, 96, 44, 13, 1, 1, 15, 368, -328, 716, 86, 125, 21, 1, -1, 13, -1324, -1344, -5634, 1866, -1063, -316, -34, -1, -1, 77, -4811, -17235
OFFSET
1,9
FORMULA
T(n, k) = det(f(i+j-1+k-n)_{i, j=1..n}) where f(n)=A007440(n).
T(n, k) = (-1)^[(n+k-1)/2]*T(k-1, n-1) if 1<=k<=n.
EXAMPLE
T(4,2)=0 since det([0,0,1,-1; 0,1,-1,0; 1,-1,0,2; -1,0,2,-3])=0.
1
-1 -1
-1 -1 -1
1 0 2 1
1 -2 4 3 1
-1 3 -11 -5 -5 -1
-1 -1 -34 10 -20 -8 -1
1 11 106 -116 96 44 13 1
1 15 368 -328 716 86 125 21 1
-1 13 -1324 -1344 -5634 1866 -1063 -316 -34 -1
MAPLE
A085143 := proc(n, k)
local A, r, c ;
A := Matrix(n, n) ;
for r from 1 to n do
for c from 1 to n do
A[r, c] := A007440(r+c-1+k-n) ;
end do:
end do:
Determinant(A) ;
end proc:
seq(seq(A085143(n, k), k=1..n), n=1..12) ; # R. J. Mathar, Jul 21 2023
PROG
(PARI) {f(n)=polcoeff((-1-x+sqrt(1+2*x+5*x^2+x^2*O(x^n)))/(2*x), n)} \\ A007440
{T(n, k)=matdet(matrix(n, n, i, j, f(i+j-1+k-n)))}
CROSSREFS
Cf. A007440.
Sequence in context: A293819 A027113 A096470 * A321029 A253473 A026120
KEYWORD
sign,tabl
AUTHOR
Michael Somos, Jun 19 2003
STATUS
approved