login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088839
Numerator of sigma(4n)/sigma(n).
6
7, 5, 7, 31, 7, 5, 7, 21, 7, 5, 7, 31, 7, 5, 7, 127, 7, 5, 7, 31, 7, 5, 7, 21, 7, 5, 7, 31, 7, 5, 7, 85, 7, 5, 7, 31, 7, 5, 7, 21, 7, 5, 7, 31, 7, 5, 7, 127, 7, 5, 7, 31, 7, 5, 7, 21, 7, 5, 7, 31, 7, 5, 7, 511, 7, 5, 7, 31, 7, 5, 7, 21, 7, 5, 7, 31, 7, 5, 7, 127, 7, 5, 7, 31, 7, 5, 7, 21, 7, 5, 7, 31
OFFSET
1,1
FORMULA
a(n) = (8*A006519(n)-1)/(1+2*A096268(n)). - Robert Israel, Nov 19 2017
From Amiram Eldar, Jan 06 2023: (Start)
a(n) = numerator(A193553(n)/A000203(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A088840(k) = 3*A065442 + 1 = 5.820085... . (End)
MAPLE
f:= proc(n) local m;
m:= padic:-ordp(n, 2);
if m::odd then (2^(m+3)-1)/3 else 2^(m+3)-1 fi
end proc:
map(f, [$1..200]); # Robert Israel, Nov 19 2017
MATHEMATICA
k=4; Table[Numerator[DivisorSigma[1, k*n]/DivisorSigma[1, n]], {n, 1, 128}]
PROG
(PARI) A088839(n) = numerator(sigma(4*n)/sigma(n)); \\ Antti Karttunen, Nov 18 2017
CROSSREFS
For denominator see A088840.
Sequence in context: A195348 A072449 A263770 * A111769 A111513 A280722
KEYWORD
easy,nonn,frac
AUTHOR
Labos Elemer, Nov 04 2003
EXTENSIONS
Typo in definition corrected by Antti Karttunen, Nov 18 2017
STATUS
approved