login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081297
Array T(k,n), read by antidiagonals: T(k,n) = ((k+1)^(n+1)-(-k)^(n+1))/(2k+1).
8
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 5, 1, 1, 1, 13, 13, 11, 1, 1, 1, 21, 25, 55, 21, 1, 1, 1, 31, 41, 181, 133, 43, 1, 1, 1, 43, 61, 461, 481, 463, 85, 1, 1, 1, 57, 85, 991, 1281, 2653, 1261, 171, 1, 1, 1, 73, 113, 1891, 2821, 10501, 8425, 4039, 341, 1, 1, 1, 91, 145, 3305
OFFSET
0,9
COMMENTS
Square array of solutions of a family of recurrences.
Rows of the array give solutions to the recurrences a(n)=a(n-1)+k(k-1)a(n-2), a(0)=a(1)=1.
Subarray of array in A072024. - Philippe Deléham, Nov 24 2013
LINKS
FORMULA
T(k, n) = ((k+1)^(n+1)-(-k)^(n+1))/(2k+1).
Rows of the array have g.f. 1/((1+kx)(1-(k+1)x)).
EXAMPLE
Rows begin
1, 1, 1, 1, 1, 1, ...
1, 1, 3, 5, 11, 21, ...
1, 1, 7, 13, 55, 133, ...
1, 1, 13, 25, 181, 481, ...
1, 1, 21, 41, 461, 1281, ...
MATHEMATICA
T[n_, k_]:=((n + 1)^(k + 1) - (-n)^(k + 1)) / (2n + 1); Flatten[Table[T[n - k, k], {n, 0, 10}, {k, 0, n}]] (* Indranil Ghosh, Mar 27 2017 *)
PROG
(PARI)
for(k=0, 10, for(n=0, 9, print1(((k+1)^(n+1)-(-k)^(n+1))/(2*k+1), ", "); ); print(); ) \\ Andrew Howroyd, Mar 26 2017
(Python)
def T(n, k): return ((n + 1)**(k + 1) - (-n)**(k + 1)) // (2*n + 1)
for n in range(11):
print([T(n - k, k) for k in range(n + 1)]) # Indranil Ghosh, Mar 27 2017
CROSSREFS
Columns include A002061, A001844, A072025.
Diagonals include A081298, A081299, A081300, A081301, A081302.
Sequence in context: A243473 A325969 A325826 * A110180 A328718 A362897
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Mar 17 2003
EXTENSIONS
Name clarified by Andrew Howroyd, Mar 27 2017
STATUS
approved