login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110180
Triangle of generalized central trinomial coefficients.
4
1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 5, 1, 1, 1, 19, 13, 7, 1, 1, 1, 51, 49, 19, 9, 1, 1, 1, 141, 161, 91, 25, 11, 1, 1, 1, 393, 581, 331, 145, 31, 13, 1, 1, 1, 1107, 2045, 1441, 561, 211, 37, 15, 1, 1, 1, 3139, 7393, 5797, 2841, 851, 289, 43, 17, 1, 1
OFFSET
0,8
COMMENTS
Rows sums are A110181. Diagonal sums are A110182. Columns include central trinomial coefficients A002426, A084601, A084603, A084605, A098264. T(n,k) = central coefficient (1 + x + kx^2)^n.
FORMULA
Number triangle T(n, k) = Sum_{j=0..floor((n-k)/2)} C(n-k, j)*C(n-k-j, j)*k^j.
EXAMPLE
Rows begin
1;
1, 1;
1, 1, 1;
1, 3, 1, 1;
1, 7, 5, 1, 1;
1, 19, 13, 7, 1, 1;
MATHEMATICA
T[n_, 0] := 1; T[n_, k_] := Sum[Binomial[n - k, j]*Binomial[n - k - j, j]*k^j, {j, 0, Floor[(n - k)/2]}]; Table[T[n, k], {n, 0, 49}, {k, 0, n}] // Flatten (* G. C. Greubel, Mar 05 2017 *)
CROSSREFS
Sequence in context: A325969 A325826 A081297 * A328718 A362897 A005765
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Jul 14 2005
STATUS
approved