login
A110180
Triangle of generalized central trinomial coefficients.
4
1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 5, 1, 1, 1, 19, 13, 7, 1, 1, 1, 51, 49, 19, 9, 1, 1, 1, 141, 161, 91, 25, 11, 1, 1, 1, 393, 581, 331, 145, 31, 13, 1, 1, 1, 1107, 2045, 1441, 561, 211, 37, 15, 1, 1, 1, 3139, 7393, 5797, 2841, 851, 289, 43, 17, 1, 1
OFFSET
0,8
COMMENTS
Rows sums are A110181. Diagonal sums are A110182. Columns include central trinomial coefficients A002426, A084601, A084603, A084605, A098264. T(n,k) = central coefficient (1 + x + kx^2)^n.
FORMULA
Number triangle T(n, k) = Sum_{j=0..floor((n-k)/2)} C(n-k, j)*C(n-k-j, j)*k^j.
EXAMPLE
Rows begin
1;
1, 1;
1, 1, 1;
1, 3, 1, 1;
1, 7, 5, 1, 1;
1, 19, 13, 7, 1, 1;
MATHEMATICA
T[n_, 0] := 1; T[n_, k_] := Sum[Binomial[n - k, j]*Binomial[n - k - j, j]*k^j, {j, 0, Floor[(n - k)/2]}]; Table[T[n, k], {n, 0, 49}, {k, 0, n}] // Flatten (* G. C. Greubel, Mar 05 2017 *)
CROSSREFS
Sequence in context: A325969 A325826 A081297 * A328718 A362897 A005765
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Jul 14 2005
STATUS
approved