login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362897
Array read by antidiagonals: T(n,k) is the number of nonisomorphic multisets of endofunctions on an n-set with k endofunctions.
3
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 7, 1, 1, 1, 13, 74, 19, 1, 1, 1, 22, 638, 1474, 47, 1, 1, 1, 34, 4663, 118949, 41876, 130, 1, 1, 1, 50, 28529, 7643021, 42483668, 1540696, 343, 1, 1, 1, 70, 151600, 396979499, 33179970333, 23524514635, 68343112, 951, 1
OFFSET
0,9
COMMENTS
Isomorphism is up to permutations of the elements of the n-set.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (first 51 antidiagonals).
FORMULA
T(0,k) = T(1,k) = 1.
EXAMPLE
Array begins:
======================================================================
n/k| 0 1 2 3 4 5 ...
---+------------------------------------------------------------------
0 | 1 1 1 1 1 1 ...
1 | 1 1 1 1 1 1 ...
2 | 1 3 7 13 22 34 ...
3 | 1 7 74 638 4663 28529 ...
4 | 1 19 1474 118949 7643021 396979499 ...
5 | 1 47 41876 42483668 33179970333 20762461502595 ...
6 | 1 130 1540696 23524514635 274252613077267 2559276179593762172 ...
...
PROG
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(v, m) = {prod(i=1, #v, my(g=gcd(v[i], m), e=v[i]/g); sum(j=1, #v, my(t=v[j]); if(e%(t/gcd(t, m))==0, t))^g)}
T(n, k) = {if(n==0, 1, my(s=0); forpart(q=n, s+=permcount(q) * polcoef(exp(sum(m=1, k, K(q, m)*x^m/m, O(x*x^k))), k)); s/n!)}
CROSSREFS
Columns k=0..3 are A000012, A001372, A054745, A362898.
Row n=2 is A002623.
Main diagonal is A277839.
Cf. A362644.
Sequence in context: A081297 A110180 A328718 * A005765 A360289 A343717
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, May 10 2023
STATUS
approved