login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Array read by antidiagonals: T(n,k) is the number of nonisomorphic multisets of endofunctions on an n-set with k endofunctions.
3

%I #7 May 10 2023 22:39:21

%S 1,1,1,1,1,1,1,1,3,1,1,1,7,7,1,1,1,13,74,19,1,1,1,22,638,1474,47,1,1,

%T 1,34,4663,118949,41876,130,1,1,1,50,28529,7643021,42483668,1540696,

%U 343,1,1,1,70,151600,396979499,33179970333,23524514635,68343112,951,1

%N Array read by antidiagonals: T(n,k) is the number of nonisomorphic multisets of endofunctions on an n-set with k endofunctions.

%C Isomorphism is up to permutations of the elements of the n-set.

%H Andrew Howroyd, <a href="/A362897/b362897.txt">Table of n, a(n) for n = 0..1325</a> (first 51 antidiagonals).

%F T(0,k) = T(1,k) = 1.

%e Array begins:

%e ======================================================================

%e n/k| 0 1 2 3 4 5 ...

%e ---+------------------------------------------------------------------

%e 0 | 1 1 1 1 1 1 ...

%e 1 | 1 1 1 1 1 1 ...

%e 2 | 1 3 7 13 22 34 ...

%e 3 | 1 7 74 638 4663 28529 ...

%e 4 | 1 19 1474 118949 7643021 396979499 ...

%e 5 | 1 47 41876 42483668 33179970333 20762461502595 ...

%e 6 | 1 130 1540696 23524514635 274252613077267 2559276179593762172 ...

%e ...

%o (PARI)

%o permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}

%o K(v,m) = {prod(i=1, #v, my(g=gcd(v[i],m), e=v[i]/g); sum(j=1, #v, my(t=v[j]); if(e%(t/gcd(t,m))==0, t))^g)}

%o T(n,k) = {if(n==0, 1, my(s=0); forpart(q=n, s+=permcount(q) * polcoef(exp(sum(m=1, k, K(q,m)*x^m/m, O(x*x^k))), k)); s/n!)}

%Y Columns k=0..3 are A000012, A001372, A054745, A362898.

%Y Row n=2 is A002623.

%Y Main diagonal is A277839.

%Y Cf. A362644.

%K nonn,tabl

%O 0,9

%A _Andrew Howroyd_, May 10 2023