login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A078469 Number of different compositions of the ladder graph L_n. 6
1, 2, 12, 74, 456, 2810, 17316, 106706, 657552, 4052018, 24969660, 153869978, 948189528, 5843007146, 36006232404, 221880401570, 1367288641824, 8425612252514, 51920962156908, 319951385193962, 1971629273320680 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
This is equally the number of partitions of a 2 x n rectangle into connected pieces consisting of unit squares cut along lattice lines, like a 2-d analog of a partition into integers. - Hugo van der Sanden, Mar 23 2009
LINKS
Liam Buttitta, On the Number of Compositions of Km X Pn, Journal of Integer Sequences, Vol. 25 (2022), Article 22.4.1.
Tomislav Došlić and Luka Podrug, Sweet division problems: from chocolate bars to honeycomb strips and back, arXiv:2304.12121 [math.CO], 2023.
Tanya Khovanova, Recursive Sequences
A. Knopfmacher and M. E. Mays, Graph Compositions. I: Basic Enumeration, Integers 1(2001), #A04.
J. N. Ridley and M. E. Mays, Compositions of unions of graphs, Fib. Quart., 42 (2004), 222-230.
FORMULA
a(n) = 6*a(n-1) + a(n-2).
G.f.: 1 + 2*x/(1 - 6*x - x^2).
a(n) = ((3 + s)^n - (3 - s)^n)/s, where s = sqrt(10) (assumes a(0) = 0).
Asymptotic to (3 + sqrt(10))^n/sqrt(10). - Ralf Stephan, Jan 03 2003
Let p[i] = Fibonacci(3*i) and A be the Hessenberg matrix of order n defined by: A[i,j] = p[j-i+1], if i <= j; A[i,j] = -1, if i = j + 1; and A[i,j] = 0, otherwise. Then, for n >= 1, a(n) = det(A). - Milan Janjic, May 08 2010
a(n) = 2*A005668(n), n > 0. - R. J. Mathar, Nov 29 2015
a(n) >= A116694(2,n). - R. J. Mathar, Nov 29 2015
MATHEMATICA
Join[{1}, LinearRecurrence[{6, 1}, {2, 12}, 30]] (* Harvey P. Dale, Jul 22 2013 *)
PROG
(Magma) I:=[1, 2, 12]; [n le 3 select I[n] else 6*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, May 17 2013
CROSSREFS
Cf. A108808, A110476. - Brian Kell, Oct 21 2008
Sequence in context: A342054 A020049 A020004 * A014351 A360318 A074616
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan, Jan 02 2003
EXTENSIONS
a(0) changed from 0 to 1 by N. J. A. Sloane, Sep 21 2009, at the suggestion of Hugo van der Sanden
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 16:56 EST 2023. Contains 367612 sequences. (Running on oeis4.)