The OEIS is supported by the many generous donors to the OEIS Foundation. Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A078469 Number of different compositions of the ladder graph L_n. 6
 1, 2, 12, 74, 456, 2810, 17316, 106706, 657552, 4052018, 24969660, 153869978, 948189528, 5843007146, 36006232404, 221880401570, 1367288641824, 8425612252514, 51920962156908, 319951385193962, 1971629273320680 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS This is equally the number of partitions of a 2 x n rectangle into connected pieces consisting of unit squares cut along lattice lines, like a 2-d analog of a partition into integers. - Hugo van der Sanden, Mar 23 2009 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Liam Buttitta, On the Number of Compositions of Km X Pn, Journal of Integer Sequences, Vol. 25 (2022), Article 22.4.1. Tomislav Došlić and Luka Podrug, Sweet division problems: from chocolate bars to honeycomb strips and back, arXiv:2304.12121 [math.CO], 2023. Tanya Khovanova, Recursive Sequences A. Knopfmacher and M. E. Mays, Graph Compositions. I: Basic Enumeration, Integers 1(2001), #A04. J. N. Ridley and M. E. Mays, Compositions of unions of graphs, Fib. Quart., 42 (2004), 222-230. Index entries for linear recurrences with constant coefficients, signature (6,1). FORMULA a(n) = 6*a(n-1) + a(n-2). G.f.: 1 + 2*x/(1 - 6*x - x^2). a(n) = ((3 + s)^n - (3 - s)^n)/s, where s = sqrt(10) (assumes a(0) = 0). Asymptotic to (3 + sqrt(10))^n/sqrt(10). - Ralf Stephan, Jan 03 2003 Let p[i] = Fibonacci(3*i) and A be the Hessenberg matrix of order n defined by: A[i,j] = p[j-i+1], if i <= j; A[i,j] = -1, if i = j + 1; and A[i,j] = 0, otherwise. Then, for n >= 1, a(n) = det(A). - Milan Janjic, May 08 2010 a(n) = 2*A005668(n), n > 0. - R. J. Mathar, Nov 29 2015 a(n) >= A116694(2,n). - R. J. Mathar, Nov 29 2015 MATHEMATICA Join[{1}, LinearRecurrence[{6, 1}, {2, 12}, 30]] (* Harvey P. Dale, Jul 22 2013 *) PROG (Magma) I:=[1, 2, 12]; [n le 3 select I[n] else 6*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, May 17 2013 CROSSREFS Cf. A108808, A110476. - Brian Kell, Oct 21 2008 Cf. A152113, A152124. Sequence in context: A342054 A020049 A020004 * A014351 A360318 A074616 Adjacent sequences: A078466 A078467 A078468 * A078470 A078471 A078472 KEYWORD nonn,easy AUTHOR Ralf Stephan, Jan 02 2003 EXTENSIONS a(0) changed from 0 to 1 by N. J. A. Sloane, Sep 21 2009, at the suggestion of Hugo van der Sanden STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 16:56 EST 2023. Contains 367612 sequences. (Running on oeis4.)