login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A020004 Nearest integer to Gamma(n + 1/12)/Gamma(1/12). 1
1, 0, 0, 0, 1, 2, 12, 73, 519, 4193, 38084, 384010, 4256112, 51428023, 672849973, 9475970455, 142929221024, 2298778304796, 39270796040273, 710146895061598, 13551969914092152, 272168729108017393, 5738224038694033364 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..445

EXAMPLE

Gamma(0 + 1/12)/Gamma(1/12) = 1, so a(0) = 1.

Gamma(1 + 1/12)/Gamma(1/12) = 1/12 = 0.08333..., so a(1) = 0.

Gamma(2 + 1/12)/Gamma(1/12) = 13/144 < 1/2, so a(2) = 0.

Gamma(3 + 1/12)/Gamma(1/12) = 325/1728 < 1/2, so a(3) = 0.

Gamma(4 + 1/12)/Gamma(1/12) = 12025/20736 = 0.5799..., so a(4) = 1.

Gamma(5 + 1/12)/Gamma(1/12) = 589225/248832 = 2.3679631237..., so a(5) = 2.

Gamma(6 + 1/12)/Gamma(1/12) = 35942725/2985984 = 12.037145878879458..., so a(6) = 12.

Gamma(7 + 1/12)/Gamma(1/12) = 2623818925/35831808 = 73.22597..., so a(7) = 73.

MAPLE

Digits := 64:f := proc(n, x) round(GAMMA(n+x)/GAMMA(x)); end;

MATHEMATICA

Table[Round[Gamma[n + 1/12]/Gamma[1/12]], {n, 0, 50}] (* G. C. Greubel, Jan 19 2018 *)

PROG

(PARI) for(n=0, 30, print1(round(gamma(n+1/12)/gamma(1/12)), ", ")) \\ G. C. Greubel, Jan 19 2018

(MAGMA) [Round(Gamma(n +1/12)/Gamma(1/12)): n in [0..30]]; // G. C. Greubel, Jan 19 2018

CROSSREFS

Cf. A020049, A020094, A021016 (decimal expansion of 1/12), A203140 (decimal expansion of Gamma(1/12)).

Sequence in context: A037515 A037718 A020049 * A078469 A014351 A074616

Adjacent sequences:  A020001 A020002 A020003 * A020005 A020006 A020007

KEYWORD

nonn

AUTHOR

Simon Plouffe

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 12:42 EDT 2018. Contains 315239 sequences. (Running on oeis4.)