login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A020004
Nearest integer to Gamma(n + 1/12)/Gamma(1/12).
2
1, 0, 0, 0, 1, 2, 12, 73, 519, 4193, 38084, 384010, 4256112, 51428023, 672849973, 9475970455, 142929221024, 2298778304796, 39270796040273, 710146895061598, 13551969914092152, 272168729108017393, 5738224038694033364
OFFSET
0,6
LINKS
EXAMPLE
Gamma(0 + 1/12)/Gamma(1/12) = 1, so a(0) = 1.
Gamma(1 + 1/12)/Gamma(1/12) = 1/12 = 0.08333..., so a(1) = 0.
Gamma(2 + 1/12)/Gamma(1/12) = 13/144 < 1/2, so a(2) = 0.
Gamma(3 + 1/12)/Gamma(1/12) = 325/1728 < 1/2, so a(3) = 0.
Gamma(4 + 1/12)/Gamma(1/12) = 12025/20736 = 0.5799..., so a(4) = 1.
Gamma(5 + 1/12)/Gamma(1/12) = 589225/248832 = 2.3679631237..., so a(5) = 2.
Gamma(6 + 1/12)/Gamma(1/12) = 35942725/2985984 = 12.037145878879458..., so a(6) = 12.
Gamma(7 + 1/12)/Gamma(1/12) = 2623818925/35831808 = 73.22597..., so a(7) = 73.
MAPLE
Digits := 64:f := proc(n, x) round(GAMMA(n+x)/GAMMA(x)); end;
MATHEMATICA
Table[Round[Gamma[n + 1/12]/Gamma[1/12]], {n, 0, 50}] (* G. C. Greubel, Jan 19 2018 *)
PROG
(PARI) for(n=0, 30, print1(round(gamma(n+1/12)/gamma(1/12)), ", ")) \\ G. C. Greubel, Jan 19 2018
(Magma) [Round(Gamma(n +1/12)/Gamma(1/12)): n in [0..30]]; // G. C. Greubel, Jan 19 2018
CROSSREFS
Cf. A020049, A020094, A021016 (decimal expansion of 1/12), A203140 (decimal expansion of Gamma(1/12)).
Sequence in context: A037718 A342054 A020049 * A078469 A014351 A378404
KEYWORD
nonn
AUTHOR
STATUS
approved