login
A014351
Four-fold exponential convolution of primes with themselves (divided by 8).
1
2, 12, 74, 460, 2861, 17722, 109037, 665020, 4014521, 23954342, 141123193, 820074040, 4697137637, 26504081542, 147300078809, 806343223508, 4349380581953, 23130233881414, 121379963732665, 629130600591920, 3224186845616653, 16354295398317790, 82187373706636505
OFFSET
0,1
LINKS
MAPLE
b:= proc(n, k) option remember; `if`(k=1, ithprime(n+1), add(
b(j, floor(k/2))*b(n-j, ceil(k/2))*binomial(n, j), j=0..n))
end:
a:= n-> b(n, 4)/8:
seq(a(n), n=0..30); # Alois P. Heinz, Jun 07 2018
MATHEMATICA
b[n_, k_] := b[n, k] = If[k==1, Prime[n+1], Sum[b[j, Floor[k/2]] b[n-j, Ceiling[k/2]] Binomial[n, j], {j, 0, n}]];
a[n_] := b[n, 4]/8;
a /@ Range[0, 30] (* Jean-François Alcover, Nov 16 2020, after Alois P. Heinz *)
CROSSREFS
Cf. A014352.
Sequence in context: A020049 A020004 A078469 * A360318 A074616 A370242
KEYWORD
nonn
AUTHOR
STATUS
approved