|
|
A108808
|
|
Number of compositions of grid graph G_{3,n} = P_3 X P_n.
|
|
7
|
|
|
4, 74, 1434, 27780, 538150, 10424872, 201947094, 3912050356, 75782907270, 1468040672696, 28438383992230, 550898690444420, 10671821831261942, 206730898391393192, 4004720564629102582, 77578083032366404308, 1502816206487087179878, 29112043791259796460440
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
REFERENCES
|
Reddy, V. and Skiena, S. "Frequencies of Large Distances in Integer Lattices." Technical Report, Department of Computer Science. Stony Brook, NY: State University of New York, Stony Brook, 1989. [Background]
Skiena, S. "Grid Graphs." Section 4.2.4 in Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp. 147-148, 1990. [Background]
|
|
LINKS
|
Eric Weisstein's World of Mathematics, Grid Graph. [Background]
|
|
FORMULA
|
a(n) = z * M^(n-1) * w,
where
z is the 1 x 6 row vector [ 1 ... 1 ],
M is the 6 x 6 matrix
[[ 2, 3, 3, 3, 4, 5 ],
[ 3, 4, 5, 5, 6, 6 ],
[ 1, 0, 2, 0, 0, 0 ],
[ 3, 5, 5, 4, 6, 6 ],
[ 2, 1, 4, 1, 2, 0 ],
[ 2, 5, 2, 5, 6, 8 ]],
and w is the 6 x 1 column vector
[[ 1 ],
[ 1 ],
[ 0 ],
[ 1 ],
[ 0 ],
[ 1 ]] (End)
G.f.: 2*x*(x-2)*(x^3-6*x^2+4*x-1) / (4*x^5-6*x^4-91*x^3+75*x^2-23*x+1). - Colin Barker, May 14 2013
|
|
MAPLE
|
z:= <1|1|1|1|1|1>: w:= <1, 1, 0, 1, 0, 1>:
M:= Matrix([[ 2, 3, 3, 3, 4, 5 ],
[ 3, 4, 5, 5, 6, 6 ],
[ 1, 0, 2, 0, 0, 0 ],
[ 3, 5, 5, 4, 6, 6 ],
[ 2, 1, 4, 1, 2, 0 ],
[ 2, 5, 2, 5, 6, 8 ]]):
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
a(4) corrected and a(5)-a(7) computed by Brian Kell, May 20 2008
a(12)-a(18) added from Frank Simon's thesis by N. J. A. Sloane, Jan 04 2013
|
|
STATUS
|
approved
|
|
|
|