login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078468
Distinct compositions of the complete graph with one edge removed (K^-_n).
2
1, 4, 13, 47, 188, 825, 3937, 20270, 111835, 657423, 4097622, 26965867, 186685725, 1355314108, 10289242825, 81481911259, 671596664012, 5749877335253, 51042081429213, 469037073951694, 4454991580211951, 43677136038927595, 441452153556357966, 4594438326374915007
OFFSET
0,2
LINKS
A. Knopfmacher and M. E. Mays, Graph Compositions. I: Basic Enumeration, Integers 1(2001), #A04.
FORMULA
a(n) = A000110(n+2) - A000110(n).
E.g.f.: (-1+exp(x)+exp(2*x))*exp(exp(x)-1).
G.f.: (G(0)*(1-x)-1-x)/x^2 where G(k) = 1 - 2*x*(k+1)/((2*k+1)*(2*x*k-1) - x*(2*k+1)*(2*k+3)*(2*x*k-1)/(x*(2*k+3) - 2*(k+1)*(2*x*k+x-1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 03 2013
G.f.: - G(0)*(1+1/x) where G(k) = 1 - 1/(1-x*(k+1))/(1-x/(x-1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Feb 07 2013
G.f.: (Q(0) -1)*(1+x)/x^2, where Q(k) = 1 - x^2*(k+1)/( x^2*(k+1) - (1-x*(k+1))*(1-x*(k+2))/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 10 2013
a(n) = Sum_{k=0..n} Stirling2(n,k) * (k+1)^2. - Ilya Gutkovskiy, Aug 09 2021
EXAMPLE
a(5) = A000110(7)-A000110(5) = 825.
MAPLE
with(combinat): a:=n->bell(n+2)-bell(n): seq(a(n), n=0..21); # Zerinvary Lajos, Jul 01 2007
CROSSREFS
Sequence in context: A149440 A149441 A149442 * A354339 A149443 A125656
KEYWORD
nonn
AUTHOR
Ralf Stephan, Jan 02 2003
STATUS
approved