login
This site is supported by donations to The OEIS Foundation.

 

Logo

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A078367 A Chebyshev T-sequence with Diophantine property. 4
2, 17, 287, 4862, 82367, 1395377, 23639042, 400468337, 6784322687, 114933017342, 1947076972127, 32985375508817, 558804306677762, 9466687838013137, 160374888939545567, 2716906424134261502 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

a(n) gives the general (positive integer) solution of the Pell equation a^2 - 285*b^2 =+4 with companion sequence b(n)=A078366(n-1), n>=1.

REFERENCES

O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108).

LINKS

Table of n, a(n) for n=0..15.

Tanya Khovanova, Recursive Sequences

Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (17,-1).

FORMULA

a(n)=17*a(n-1)-a(n-2), n >= 1; a(-1)=17, a(0)=2.

a(n) = S(n, 17) - S(n-2, 17) = 2*T(n, 17/2) with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. S(n, 17)=A078366(n). U-, resp. T-, are Chebyshev's polynomials of the second, resp. first, case. See A049310 and A053120.

G.f.: (2-17*x)/(1-17*x+x^2).

a(n) = ap^n + am^n, with ap := (17+sqrt(285))/2 and am := (17-sqrt(285))/2.

MATHEMATICA

a[0] = 2; a[1] = 17; a[n_] := 17a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 15}] (* Robert G. Wilson v, Jan 30 2004 *)

PROG

(PARI) a(n)=if(n<0, 0, subst(2*poltchebi(n), x, 17/2))

(Sage) [lucas_number2(n, 17, 1) for n in xrange(0, 20)] # Zerinvary Lajos, Jun 26 2008

CROSSREFS

a(n)=sqrt(4 + 285*A078366(n-1)^2), n>=1, (Pell equation d=285, +4).

Cf. A077428, A078355 (Pell +4 equations).

Sequence in context: A086534 A198287 A268705 * A090306 A304857 A007785

Adjacent sequences:  A078364 A078365 A078366 * A078368 A078369 A078370

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Nov 29 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 18:50 EDT 2018. Contains 315270 sequences. (Running on oeis4.)