login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A078367 A Chebyshev T-sequence with Diophantine property. 3
2, 17, 287, 4862, 82367, 1395377, 23639042, 400468337, 6784322687, 114933017342, 1947076972127, 32985375508817, 558804306677762, 9466687838013137, 160374888939545567, 2716906424134261502 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

a(n) gives the general (positive integer) solution of the Pell equation a^2 - 285*b^2 =+4 with companion sequence b(n)=A078366(n-1), n>=1.

REFERENCES

O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108).

LINKS

Table of n, a(n) for n=0..15.

Tanya Khovanova, Recursive Sequences

Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (17,-1).

FORMULA

a(n)=17*a(n-1)-a(n-2), n >= 1; a(-1)=17, a(0)=2.

a(n) = S(n, 17) - S(n-2, 17) = 2*T(n, 17/2) with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. S(n, 17)=A078366(n). U-, resp. T-, are Chebyshev's polynomials of the second, resp. first, case. See A049310 and A053120.

G.f.: (2-17*x)/(1-17*x+x^2).

a(n) = ap^n + am^n, with ap := (17+sqrt(285))/2 and am := (17-sqrt(285))/2.

MATHEMATICA

a[0] = 2; a[1] = 17; a[n_] := 17a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 15}] (* Robert G. Wilson v, Jan 30 2004 *)

PROG

(PARI) a(n)=if(n<0, 0, subst(2*poltchebi(n), x, 17/2))

(Sage) [lucas_number2(n, 17, 1) for n in xrange(0, 20)] # Zerinvary Lajos, Jun 26 2008

CROSSREFS

a(n)=sqrt(4 + 285*A078366(n-1)^2), n>=1, (Pell equation d=285, +4).

Cf. A077428, A078355 (Pell +4 equations).

Sequence in context: A086534 A198287 A268705 * A090306 A007785 A201785

Adjacent sequences:  A078364 A078365 A078366 * A078368 A078369 A078370

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Nov 29 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified April 27 00:46 EDT 2017. Contains 285506 sequences.