login
A380771
E.g.f. A(x) satisfies A(x) = exp(x * A(x) * (1 + x*A(x)^2)) * (1 + x*A(x)^2).
1
1, 2, 17, 277, 6797, 224301, 9327235, 468615379, 27624235385, 1869871826521, 142960839681311, 12185757382882623, 1145898471300898837, 117849030630765668677, 13159165724143312996907, 1585485015346749680509051, 205026978076680944633853425, 28324382622872897021731667121
OFFSET
0,2
FORMULA
a(n) = n! * Sum_{k=0..n} (2*n-k+1)^(k-1) * binomial(2*n+1,n-k)/k!.
PROG
(PARI) a(n, q=1, r=2, s=1, t=1, u=1) = q*n!*sum(k=0, n, (r*n+(s-r)*k+q)^(k-1)*binomial(r*u*n+((s-r)*u+t)*k+q*u, n-k)/k!);
CROSSREFS
Cf. A380768.
Sequence in context: A379691 A338635 A268705 * A380718 A078367 A377888
KEYWORD
nonn,new
AUTHOR
Seiichi Manyama, Feb 02 2025
STATUS
approved