login
A380718
E.g.f. A(x) satisfies A(x) = exp(x * A(x)^2) / (1 - x*A(x)).
2
1, 2, 17, 277, 6809, 225381, 9408745, 474835159, 28128322801, 1913917635433, 147124118481641, 12610993501595523, 1192699876840875529, 123380247466574450509, 13858619936380747514953, 1679795510876270598645631, 218541202774350975212752865, 30376105717226232363041309265
OFFSET
0,2
FORMULA
a(n) = n! * Sum_{k=0..n} (n+k+1)^(k-1) * binomial(2*n,n-k)/k!.
PROG
(PARI) a(n) = n!*sum(k=0, n, (n+k+1)^(k-1)*binomial(2*n, n-k)/k!);
CROSSREFS
Cf. A377831.
Sequence in context: A338635 A268705 A380771 * A078367 A377888 A090306
KEYWORD
nonn,new
AUTHOR
Seiichi Manyama, Jan 30 2025
STATUS
approved