login
A380663
Expansion of e.g.f. (1/x) * Series_Reversion( x * (1 - x) * exp(-x/(1 - x)) ).
7
1, 2, 15, 208, 4285, 117936, 4075099, 169736960, 8282604537, 463604723200, 29287449579751, 2061571190059008, 160023548976361525, 13580237335641417728, 1250935473495646861875, 124307671411309327876096, 13255531892787507819759601, 1509841440567809574906101760
OFFSET
0,2
FORMULA
E.g.f. A(x) satisfies A(x) = exp(x * A(x)/(1 - x*A(x)))/(1 - x*A(x)).
a(n) = n! * Sum_{k=0..n} (n+1)^(k-1) * binomial(2*n,n-k)/k!.
PROG
(PARI) a(n) = n!*sum(k=0, n, (n+1)^(k-1)*binomial(2*n, n-k)/k!);
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Seiichi Manyama, Jan 30 2025
STATUS
approved