login
A099718
Consider the family of directed multigraphs enriched by the species of trees. Sequence gives number of those multigraphs with n labeled loops and edges.
2
1, 2, 15, 207, 4274, 120698, 4408714, 200482089, 11035845002, 719691942986, 54661283926338, 4768412660292713, 472309503983879356, 52604316569196875434, 6533611563916740388476, 898472724512273277951811, 135941600045496082012663932, 22505828691354514668620263242
OFFSET
0,2
REFERENCES
G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
LINKS
G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]
FORMULA
E.g.f.: B(R(x)) where B(x) is the e.g.f. of A014507 and 1 + R(x) is the e.g.f. of A000272. - Andrew Howroyd, Jan 12 2021
PROG
(PARI) \\ R(n) is A000272 as e.g.f.; EnrichedGdlSeq defined in A098622.
R(n)={my(w=lambertw(-x + O(x*x^n))); 1 - w - w^2/2}
EnrichedGdlSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 26 2004
EXTENSIONS
Terms a(12) and beyond from Andrew Howroyd, Jan 12 2021
STATUS
approved