login
A380665
Expansion of e.g.f. (1/x) * Series_Reversion( x * (1 - x)^2 * exp(-x/(1 - x)) ).
6
1, 3, 31, 586, 16401, 612336, 28678231, 1618268688, 106946168769, 8105456425600, 693228400344591, 66055574392722432, 6940237183385667409, 797165049089377683456, 99381018789002592800775, 13365207839280075801020416, 1928719845703457066672384769, 297293268794967068206087176192
OFFSET
0,2
FORMULA
E.g.f. A(x) satisfies A(x) = exp(x * A(x)/(1 - x*A(x)))/(1 - x*A(x))^2.
a(n) = n! * Sum_{k=0..n} (n+1)^(k-1) * binomial(3*n+1,n-k)/k!.
PROG
(PARI) a(n) = n!*sum(k=0, n, (n+1)^(k-1)*binomial(3*n+1, n-k)/k!);
CROSSREFS
Cf. A377832.
Sequence in context: A273378 A266487 A229258 * A319896 A370260 A222895
KEYWORD
nonn,new
AUTHOR
Seiichi Manyama, Jan 30 2025
STATUS
approved