login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266487
E.g.f.: Limit_{N->oo} [ Sum_{n>=0} (N - n)^(2*n) * (x/N)^n/n! ]^(1/N).
4
1, 1, -3, 31, -559, 14541, -496811, 21081859, -1070585055, 63366015673, -4285932328819, 326248732427751, -27610580638457807, 2572239828612623365, -261621661000490429211, 28849626308051995285771, -3428690784657696770593471, 436924188109882619766249201, -59432725217403244945921112675, 8595527924368773785463788378287, -1317123285394547040368548520041839, 213171869078193696050387803319525821, -36338236299957647745418230431675850763, 6507698606647750492700809995200106342675, -1221579456277487714539848255959245396739999
OFFSET
0,3
COMMENTS
Compare to: Limit_{N->oo} [ Sum_{n>=0} (N + n)^n * x^n/n! ]^(1/N) = Sum_{n>=0} (n+1)^(n-1) * x^n/n!.
EXAMPLE
E.g.f.: A(x) = 1 + x - 3*x^2/2! + 31*x^3/3! - 559*x^4/4! + 14541*x^5/5! - 496811*x^6/6! + 21081859*x^7/7! - 1070585055*x^8/8! + 63366015673*x^9/9! - 4285932328819*x^10/10! +...
where A(x) equals the limit, as N -> oo, of the series
[1 + (N-1)^2*(x/N) + (N-2)^4*(x/N)^2/2! + (N-3)^6*(x/N)^3/3! + (N-4)^8*(x/N)^4/4! + (N-5)^10*(x/N)^5/5! + (N-6)^12*(x/N)^6/6! +...]^(1/N).
PROG
(PARI) /* Informal listing of terms 0..30 */
\p300
H(n) = sum(k=0, 32, (n - k)^(2*k) * x^k/k! +O(x^32))
Vec( round( serlaplace( subst(H(10^100)^(1/10^100), x, x/10^100) )*1.) )
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Dec 30 2015
STATUS
approved