login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266485
E.g.f.: Limit_{N->oo} [ Sum_{n>=0} (N + 2*n)^(2*n) * (x/N)^n/n! ]^(1/N).
10
1, 1, 9, 193, 6929, 356001, 24004825, 2012327521, 202156421409, 23701550853313, 3179302948594601, 480443117415138945, 80788534008942735409, 14965275494082095616097, 3028424508967743713615481, 664790043100841638943719201, 157352199248412053285546165825, 39950540529265571984889165180801
OFFSET
0,3
COMMENTS
Compare to: Limit_{N->oo} [ Sum_{n>=0} (N + n)^n * x^n/n! ]^(1/N) = Sum_{n>=0} (n+1)^(n-1) * x^n/n!.
Related limits (Paul D. Hanna, Jan 20 2023):
exp(x) = lim_{N->oo} [ Sum_{n>=0} (N^2 + n)^n * (x/N)^n/n! ]^(1/N).
W(x) = lim_{N->oo} [ Sum_{n>=0} (N^2 + N*n)^n * (x/N)^n/n! ]^(1/N), where W(x) = LambertW(-x)/(-x).
LINKS
FORMULA
E.g.f. A(x) = Sum_{n>=0} a(n) * x^n/n! may be defined by the following (Paul D. Hanna, Jan 20 2023):
(1) A(x) = lim_{N->oo} [ Sum_{n>=0} (N + 2*n)^(2*n) * (x/N)^n/n! ]^(1/N).
(2) A(x) = exp( Sum_{n>=0} A359926(n)*x^n/n! ), where A359926(n) = (1/4) * [x^n*y^(n+1)/n!] log( Sum_{n>=0} (n + 2*y)^(2*n) *x^n/n! ).
a(n) ~ c * d^n * n^(n-2), where d = 4*(1 + sqrt(2)) * exp(1 - sqrt(2)) = 6.3818267815342167443903123351857161682971406064645602440616... and c = sqrt(1 - 1/sqrt(2))/2 * exp(3/2 - sqrt(2)) = 0.294836494691148677397464568534316405253091784834436235... - Vaclav Kotesovec, Jan 21 2023, updated Mar 17 2024
EXAMPLE
E.g.f.: A(x) = 1 + x + 9*x^2/2! + 193*x^3/3! + 6929*x^4/4! + 356001*x^5/5! + 24004825*x^6/6! + 2012327521*x^7/7! + 202156421409*x^8/8! + 23701550853313*x^9/9! + 3179302948594601*x^10/10! +...
where A(x) equals the limit, as N -> oo, of the series
[1 + (N+2)^2*(x/N) + (N+4)^4*(x/N)^2/2! + (N+6)^6*(x/N)^3/3! + (N+8)^8*(x/N)^4/4! + (N+10)^10*(x/N)^5/5! + (N+12)^12*(x/N)^6/6! +...]^(1/N).
The logarithm of the g.f. A(x) begins (Paul D. Hanna, Jan 20 2023):
(a) log(A(x)) = x + 8*x^2/2! + 168*x^3/3! + 6016*x^4/4! + 309760*x^5/5! + 20957184*x^6/6! + 1762991104*x^7/7! + 177690607616*x^8/8! + ... + A359926(n)*x^n/n! + ...
where A359926(n) = [x^n*y^(n+1)/n!] (1/4) * log( Sum_{n>=0} (n + 2*y)^(2*n) * x^n/n! );
that is, the coefficient of x^n/n! in the logarithm of e.g.f A(x) equals the coefficient of y^(n+1)*x^n/n! in the series given by
(b) (1/4) * log( Sum_{n>=0} (n + 2*y)^(2*n) * x^n/n! ) = (y^2 + y + 1/4)*x + (8*y^3 + 18*y^2 + 14*y + 15/4)*x^2/2! + (168*y^4 + 632*y^3 + 933*y^2 + 639*y + 683/4)*x^3/3! + (6016*y^5 + 33088*y^4 + 76480*y^3 + 92680*y^2 + 58720*y + 31019/2)*x^4/4! + ...
PROG
(PARI) /* Informal listing of terms 0..30 */
\p300
P(n) = sum(k=0, 32, (n+2*k)^(2*k) * x^k/k! +O(x^31))
Vec( round( serlaplace( subst(P(10^100)^(1/10^100), x, x/10^100) )*1.) )
(PARI) /* Using formula for the logarithm of g.f. A(x) Paul D. Hanna, Jan 20 2023 */
{L(n) = (1/4) * n! * polcoeff( polcoeff( log( sum(m=0, n+1, (m + 2*y)^(2*m) *x^m/m! ) +x*O(x^n) ), n, x), n+1, y)}
{a(n) = n! * polcoeff( exp( sum(m=1, n+1, L(m)*x^m/m! ) +x*O(x^n)), n)}
for(n=0, 30, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 30 2015
STATUS
approved