Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Mar 17 2024 09:50:42
%S 1,1,9,193,6929,356001,24004825,2012327521,202156421409,
%T 23701550853313,3179302948594601,480443117415138945,
%U 80788534008942735409,14965275494082095616097,3028424508967743713615481,664790043100841638943719201,157352199248412053285546165825,39950540529265571984889165180801
%N E.g.f.: Limit_{N->oo} [ Sum_{n>=0} (N + 2*n)^(2*n) * (x/N)^n/n! ]^(1/N).
%C Compare to: Limit_{N->oo} [ Sum_{n>=0} (N + n)^n * x^n/n! ]^(1/N) = Sum_{n>=0} (n+1)^(n-1) * x^n/n!.
%C Related limits (_Paul D. Hanna_, Jan 20 2023):
%C exp(x) = lim_{N->oo} [ Sum_{n>=0} (N^2 + n)^n * (x/N)^n/n! ]^(1/N).
%C W(x) = lim_{N->oo} [ Sum_{n>=0} (N^2 + N*n)^n * (x/N)^n/n! ]^(1/N), where W(x) = LambertW(-x)/(-x).
%H Paul D. Hanna, <a href="/A266485/b266485.txt">Table of n, a(n) for n = 0..200</a>
%F E.g.f. A(x) = Sum_{n>=0} a(n) * x^n/n! may be defined by the following (_Paul D. Hanna_, Jan 20 2023):
%F (1) A(x) = lim_{N->oo} [ Sum_{n>=0} (N + 2*n)^(2*n) * (x/N)^n/n! ]^(1/N).
%F (2) A(x) = exp( Sum_{n>=0} A359926(n)*x^n/n! ), where A359926(n) = (1/4) * [x^n*y^(n+1)/n!] log( Sum_{n>=0} (n + 2*y)^(2*n) *x^n/n! ).
%F a(n) ~ c * d^n * n^(n-2), where d = 4*(1 + sqrt(2)) * exp(1 - sqrt(2)) = 6.3818267815342167443903123351857161682971406064645602440616... and c = sqrt(1 - 1/sqrt(2))/2 * exp(3/2 - sqrt(2)) = 0.294836494691148677397464568534316405253091784834436235... - _Vaclav Kotesovec_, Jan 21 2023, updated Mar 17 2024
%e E.g.f.: A(x) = 1 + x + 9*x^2/2! + 193*x^3/3! + 6929*x^4/4! + 356001*x^5/5! + 24004825*x^6/6! + 2012327521*x^7/7! + 202156421409*x^8/8! + 23701550853313*x^9/9! + 3179302948594601*x^10/10! +...
%e where A(x) equals the limit, as N -> oo, of the series
%e [1 + (N+2)^2*(x/N) + (N+4)^4*(x/N)^2/2! + (N+6)^6*(x/N)^3/3! + (N+8)^8*(x/N)^4/4! + (N+10)^10*(x/N)^5/5! + (N+12)^12*(x/N)^6/6! +...]^(1/N).
%e The logarithm of the g.f. A(x) begins (_Paul D. Hanna_, Jan 20 2023):
%e (a) log(A(x)) = x + 8*x^2/2! + 168*x^3/3! + 6016*x^4/4! + 309760*x^5/5! + 20957184*x^6/6! + 1762991104*x^7/7! + 177690607616*x^8/8! + ... + A359926(n)*x^n/n! + ...
%e where A359926(n) = [x^n*y^(n+1)/n!] (1/4) * log( Sum_{n>=0} (n + 2*y)^(2*n) * x^n/n! );
%e that is, the coefficient of x^n/n! in the logarithm of e.g.f A(x) equals the coefficient of y^(n+1)*x^n/n! in the series given by
%e (b) (1/4) * log( Sum_{n>=0} (n + 2*y)^(2*n) * x^n/n! ) = (y^2 + y + 1/4)*x + (8*y^3 + 18*y^2 + 14*y + 15/4)*x^2/2! + (168*y^4 + 632*y^3 + 933*y^2 + 639*y + 683/4)*x^3/3! + (6016*y^5 + 33088*y^4 + 76480*y^3 + 92680*y^2 + 58720*y + 31019/2)*x^4/4! + ...
%o (PARI) /* Informal listing of terms 0..30 */
%o \p300
%o P(n) = sum(k=0,32, (n+2*k)^(2*k) * x^k/k! +O(x^31))
%o Vec( round( serlaplace( subst(P(10^100)^(1/10^100),x,x/10^100) )*1.) )
%o (PARI) /* Using formula for the logarithm of g.f. A(x) _Paul D. Hanna_, Jan 20 2023 */
%o {L(n) = (1/4) * n! * polcoeff( polcoeff( log( sum(m=0, n+1, (m + 2*y)^(2*m) *x^m/m! ) +x*O(x^n) ), n, x), n+1, y)}
%o {a(n) = n! * polcoeff( exp( sum(m=1, n+1, L(m)*x^m/m! ) +x*O(x^n)), n)}
%o for(n=0, 30, print1(a(n), ", "))
%Y Cf. A266481, A266482, A266483, A266484, A266486, A266487, A359926, A359927, A319147, A318633, A319834.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Dec 30 2015