login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A266490
E.g.f. A(x) satisfies: A(x) = exp( Integral B(x) dx ) such that B(x) = exp(2*x) * exp( Integral A(x) dx ), where the constant of integration is zero.
2
1, 1, 4, 20, 126, 972, 8876, 93580, 1119328, 14986944, 222184136, 3614288272, 64022264176, 1226914925840, 25295189791296, 558317369479616, 13136590271813856, 328243850207690432, 8680766764223956416, 242245419192494844096, 7113910552105144027136, 219304957649505551899136, 7081169542830272102170752, 238996807468258679150596352
OFFSET
0,3
COMMENTS
Compare to: G(x) = exp( Integral G(x) dx ) when G(x) = 1/(1-x).
LINKS
FORMULA
E.g.f. A(x) satisfies:
(1) A(x) = exp( Integral A(x) + 2*log(A(x)) dx ).
(2) A(x) = A'(x)/A(x) - 2*log(A(x)).
(3) log(A(x)) = exp(2*x) * Integral exp(-2*x)*A(x) dx.
(4) A(x) = exp( Series_Reversion( Integral 1/(exp(x) + 2*x) dx ) ).
a(n) ~ c^(n+1) * n!, where c = 1/Integral_{x=0..infinity} 1/(2*x + exp(x)) dx = 1.4650202775490107369040248583790383461628786237838809798971... - Vaclav Kotesovec, Aug 21 2017
EXAMPLE
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 20*x^3/3! + 126*x^4/4! + 972*x^5/5! + 8876*x^6/6! + 93580*x^7/7! + 1119328*x^8/8! + 14986944*x^9/9! + 222184136*x^10/10! +...
such that log(A(x)) = Integral B(x) dx
where B(x) = 1 + 3*x + 10*x^2/2! + 40*x^3/3! + 206*x^4/4! + 1384*x^5/5! + 11644*x^6/6! + 116868*x^7/7! + 1353064*x^8/8! + 17693072*x^9/9! + 257570280*x^10/10! +...
and A(x) and B(x) satisfy:
(1) A(x) = B'(x)/B(x) - 2,
(2) B(x) = A'(x)/A(x),
(3) B(x) = A(x) + 2*log(A(x)),
(4) log(A(x)) = Integral B(x) dx,
(5) log(B(x)) = Integral A(x) dx + 2*x.
The Series Reversion of log(A(x)) equals Integral 1/(exp(x) + 2*x) dx:
Integral 1/(exp(x) + 2*x) dx = x - 3*x^2/2! + 17*x^3/3! - 145*x^4/4! + 1649*x^5/5! - 23441*x^6/6! + 399865*x^7/7! - 7957881*x^8/8! + 180997857*x^9/9! - 4631289697*x^10/10! +...
so that A( Integral 1/(exp(x) + 2*x) dx ) = exp(x).
MATHEMATICA
a[ n_] := a[n] = If[ n < 1, Boole[n == 0], Sum[ Binomial[n - 1, k - 1] a[n - k] Sum[ 2^(j - 1) a[k - j], {j, k}], {k, n}]]; (* Michael Somos, Aug 08 2017 *)
PROG
(PARI) {a(n) = my(A=1+x, B=1+x); for(i=0, n, A = exp( intformal( B + x*O(x^n) ) ); B = exp( intformal( 2 + A ) ) ); n!*polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = n! * polcoeff( exp( serreverse( intformal( 1/(exp(x +x*O(x^n)) + 2*x) ) )), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A349603 A285868 A361548 * A135886 A007550 A361558
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 27 2016
STATUS
approved