login
A380762
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * (1 + x)^2) / (1 + x) ).
1
1, 2, 15, 208, 4249, 115656, 3946879, 162225680, 7807264497, 430828353280, 26825288214031, 1860715287986688, 142304071119852745, 11897080341213068288, 1079508321205459768575, 105660694801273960216576, 11097101798773200862180321, 1244852059489783737208012800
OFFSET
0,2
FORMULA
E.g.f. A(x) satisfies A(x) = exp( x * A(x) * (1 + x*A(x))^2 ) * (1 + x*A(x)).
a(n) = n! * Sum_{k=0..n} (n+1)^(k-1) * binomial(n+2*k+1,n-k)/k!.
PROG
(PARI) a(n, q=1, r=1, s=1, t=2, u=1) = q*n!*sum(k=0, n, (r*n+(s-r)*k+q)^(k-1)*binomial(r*u*n+((s-r)*u+t)*k+q*u, n-k)/k!);
CROSSREFS
Cf. A380664.
Sequence in context: A282521 A099718 A143881 * A380663 A377890 A298692
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 02 2025
STATUS
approved