The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A078364 A Chebyshev S-sequence with Diophantine property. 7
 1, 15, 224, 3345, 49951, 745920, 11138849, 166336815, 2483913376, 37092363825, 553901543999, 8271430796160, 123517560398401, 1844491975179855, 27543862067299424, 411313439034311505 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) gives the general (positive integer) solution of the Pell equation b^2 - 221*a^2 = +4 with companion sequence b(n)=A078365(n+1), n>=0. This is the m=17 member of the m-family of sequences S(n,m-2) = S(2*n+1,sqrt(m))/sqrt(m). The m=4..16 (nonnegative) sequences are: A000027, A001906, A001353, A004254, A001109, A004187, A001090, A018913, A004189, A004190, A004191, A078362 and A007655. The m=1..3 (signed) sequences are A049347, A056594, A010892. For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 15's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011 For n>=2, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,14}. - Milan Janjic, Jan 23 2015 LINKS Harvey P. Dale, Table of n, a(n) for n = 0..850 A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case a=0,b=1; p=15, q=-1. Tanya Khovanova, Recursive Sequences W. Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eq.(44), lhs, m=17. Index entries for linear recurrences with constant coefficients, signature (15,-1). FORMULA a(n) = 15*a(n-1) - a(n-2), n>= 1; a(-1)=0, a(0)=1. a(n) = S(2*n+1, sqrt(17))/sqrt(17) = S(n, 15); S(n, x) := U(n, x/2), Chebyshev polynomials of the 2nd kind, A049310. a(n) = (ap^(n+1) - am^(n+1))/(ap-am) with ap = (15+sqrt(221))/2 and am = (15-sqrt(221))/2. G.f.: 1/(1 - 15*x + x^2). - Philippe Deléham, Nov 17 2008 a(n) = Sum_{k=0..n} A101950(n,k)*14^k. - Philippe Deléham, Feb 10 2012 Product {n >= 0} (1 + 1/a(n)) = 1/13*(13 + sqrt(221)). - Peter Bala, Dec 23 2012 Product {n >= 1} (1 - 1/a(n)) = 1/30*(13 + sqrt(221)). - Peter Bala, Dec 23 2012 For n>=1, a(n) = U(n-1,15/2), where U(k,x) is Chebyshev polynomial of the second kind. - Milan Janjic, Jan 23 2015 MATHEMATICA LinearRecurrence[{15, -1}, {1, 15}, 30] (* Harvey P. Dale, Oct 16 2011 *) PROG (Sage) [lucas_number1(n, 15, 1) for n in range(1, 20)] # Zerinvary Lajos, Jun 25 2008 CROSSREFS a(n) = sqrt((A078365(n+1)^2 - 4)/221), n>=0, (Pell equation d=221, +4). Cf. A077428, A078355 (Pell +4 equations). Sequence in context: A218696 A297669 A171320 * A209221 A207690 A207925 Adjacent sequences:  A078361 A078362 A078363 * A078365 A078366 A078367 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Nov 29 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 29 21:59 EDT 2020. Contains 338074 sequences. (Running on oeis4.)