login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072273
Index of powers of 2 that equal the number of noncongruent roots to the congruence x^2 == k (mod n) for (k,n)=1 and assuming solvability.
4
0, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 3, 1, 2, 1, 2, 2, 1, 1, 3, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 1, 2, 2, 2, 2, 1, 3, 1, 1, 1, 3, 2, 1, 2, 3, 1, 2, 2, 2, 2, 1, 2, 3, 1, 1, 2, 2, 1, 2, 1, 3, 3
OFFSET
1,8
LINKS
FORMULA
2^a(n) = A060594(n).
a(n) = A005087(n) + i, where i may be 0, 1 or 2 according as 2^j divides n, respectively with j <= 1, j = 2 or j >= 3, (i.e., i=0 when n is not divisible by 4; i=1 when n is divisible by 4 but not by 8; i=2 when n is divisible by 8).
MATHEMATICA
Log[2, Table[cnt=0; Do[If[Mod[k^2-1, n]==0, cnt++ ], {k, n}]; cnt, {n, 150}]] (* T. D. Noe, Sep 09 2005 *)
PROG
(PARI)
A072273(n) = if(n<=2, 0, #znstar(n)[3] ); \\ After Joerg Arndt's code for A060594
A072273(n) = {my(o=valuation(n, 2)); (omega(n>>o)+max(min(o-1, 2), 0)); }; \\ Or after Charles R Greathouse IV code for A060594.
\\ Antti Karttunen, Aug 22 2017
CROSSREFS
Cf. A060594.
Cf. A046072. - R. J. Mathar, Dec 15 2008
Sequence in context: A359306 A332761 A046072 * A157230 A034380 A328966
KEYWORD
nonn
AUTHOR
Lekraj Beedassy, Jul 09 2002
EXTENSIONS
Corrected and extended by T. D. Noe, Sep 09 2005
STATUS
approved