This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A072271 A partial product representation of f(n) = A015523(n) and L(n) = A072263(n). 0
 3, 1, 24, 19, 431, 14, 7589, 311, 5559, 241, 2345179, 286, 41223001, 4229, 70051 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS For even n, f(n) = Product_{d|n} a(d); for odd n, f(n) = Product_{d|n} a(2d). For odd prime p, a(p) = L(p)/3, where L(n) = 5*f(n-1) + f(n+1). a(1)=3, a(2)=1. a(2p) = f(p) for odd primes p. a(2^(k+1)) = L(2^k). a(3*2^k) = L(2^k) - 5^k. For odd n, L(n) = Product_{d|n} a(d). For k > 0 and odd n, L(n*2^k) = Product_{d|n} a(d*2^(k+1)). LINKS FORMULA Let h = (3+sqrt(29))/2, K(n, x) = n-th cyclotomic polynomial, so that x^n - 1 = Product_{d|n} K(d, x); g(d) is the order of K(d, x). a(n) = (h-3)^g(n)*K(n, h^2). EXAMPLE f(12) = a(1)*a(2)*a(3)*a(4)*a(6)*a(12) = 3*1*24*19*14*286 = 5477472 for even n; f(7) = a(2)*a(14) = 1*4229 = 4229 for odd n. L(6) = a(4)*a(12) = 19*286 = 5434 = 5*f(5) + f(7) = 5*241 + 4229 for even n; L(15) = a(1)*a(3)*a(5)*a(15) = 3*24*431*70051 = 2173822632 for odd n. CROSSREFS Cf. A072270, A072280, A072183, A127259, A127607. Sequence in context: A281377 A138654 A175289 * A309397 A193472 A259208 Adjacent sequences:  A072268 A072269 A072270 * A072272 A072273 A072274 KEYWORD nonn,uned,more AUTHOR Miklos Kristof, Jul 09 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 21 19:04 EDT 2019. Contains 326168 sequences. (Running on oeis4.)