login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A309397 a(n) = gcd(n^2, A001008(n-1)) for n > 1. 1
1, 3, 1, 25, 1, 49, 1, 1, 1, 121, 1, 169, 1, 1, 1, 289, 1, 361, 1, 1, 1, 529, 1, 5, 1, 1, 1, 841, 1, 961, 1, 1, 1, 1, 1, 1369, 1, 1, 1, 1681, 1, 1849, 1, 1, 1, 2209, 1, 7, 1, 1, 1, 2809, 1, 1, 1, 1, 1, 3481, 1, 3721, 1, 1, 1, 1, 1, 4489, 1, 1, 1, 5041, 1, 5329 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,2

COMMENTS

By Wolstenholme's theorem, if p > 3 is prime, then a(p) = p^2.

Conjecture: for n > 3, if a(n) = n^2, then n is a prime.

Note: the weak pseudoprimes n such that a(n) = n are not known.

Composite numbers m <> p^2 for which a(m) > 1 are the same as in A309391: 88, 1290, 9339, ...

LINKS

Table of n, a(n) for n=2..73.

R. Meštrović, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862--2012), arXiv:1111.3057 [math.NT], 2001.

Eric Weisstein's World of Mathematics, Wolstenholme's Theorem.

Wikipedia, Wolstenholme's theorem.

FORMULA

a(n) = A309391(n) for composite n.

a(p) = p^2 for every prime p > 3.

a(p^2) = p iff p > 3 is a prime.

EXAMPLE

a(11) = gcd(11^2, A001008(11-1)) = gcd(121, 7381) = 121.

MATHEMATICA

a[n_] := GCD[n^2, Numerator[HarmonicNumber[n-1]]]; Array[a, 72, 2]

PROG

(MAGMA) [Gcd(k^2, Numerator(HarmonicNumber(k-1))):k in [2..80]]; // Marius A. Burtea, Jul 28 2019

(Python)

from sympy import gcd, harmonic

def A309387(n):

    return gcd(n**2, harmonic(n-1).p) # Chai Wah Wu, Jul 31 2019

CROSSREFS

Cf. A001008, A007406 (see our comment), A309391.

Sequence in context: A138654 A175289 A072271 * A193472 A259208 A104033

Adjacent sequences:  A309394 A309395 A309396 * A309398 A309399 A309401

KEYWORD

nonn

AUTHOR

Amiram Eldar and Thomas Ordowski, Jul 28 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 22:44 EDT 2019. Contains 328291 sequences. (Running on oeis4.)