login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A partial product representation of f(n) = A015523(n) and L(n) = A072263(n).
0

%I #15 Sep 19 2024 18:48:02

%S 3,1,24,19,431,14,7589,311,5559,241,2345179,286,41223001,4229,70051,

%T 95471,12736968311,5309,223887209309,88321,21607111,1306469,

%U 69176042380099,94846,2821250547551,22964761,160204320879,27289081,375703599163598591,119641

%N A partial product representation of f(n) = A015523(n) and L(n) = A072263(n).

%C For even n, f(n) = Product_{d|n} a(d); for odd n, f(n) = Product_{d|n} a(2d).

%C For odd prime p, a(p) = L(p)/3, where L(n) = 5*f(n-1) + f(n+1).

%C a(1)=3, a(2)=1.

%C a(2p) = f(p) for odd primes p.

%C a(2^(k+1)) = L(2^k).

%C a(3*2^k) = L(2^k) - 5^k.

%C For odd n, L(n) = Product_{d|n} a(d).

%C For k > 0 and odd n, L(n*2^k) = Product_{d|n} a(d*2^(k+1)).

%F a(n) = (h-3)^g(n) * K(n, h^2/5) for n > 2 where h = (3+sqrt(29))/2, Phi(n, x) = n-th cyclotomic polynomial and g(n) is the order of Phi(n, x).

%e f(12) = a(1)*a(2)*a(3)*a(4)*a(6)*a(12) = 3*1*24*19*14*286 = 5477472 for even n;

%e f(7) = a(2)*a(14) = 1*4229 = 4229 for odd n.

%e L(6) = a(4)*a(12) = 19*286 = 5434 = 5*f(5) + f(7) = 5*241 + 4229 for even n;

%e L(15) = a(1)*a(3)*a(5)*a(15) = 3*24*431*70051 = 2173822632 for odd n.

%Y Cf. A072270, A072280, A072183, A127259, A127607.

%K nonn

%O 1,1

%A _Miklos Kristof_, Jul 09 2002

%E More terms and entry revised by _Sean A. Irvine_, Sep 19 2024