This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A072280 Product representation of the Pell numbers A000129 and A002203. 5
 2, 1, 7, 6, 41, 5, 239, 34, 199, 29, 8119, 33, 47321, 169, 961, 1154, 1607521, 197, 9369319, 1121, 32641, 5741, 318281039, 1153, 45245801, 33461, 7761799, 38081, 63018038201, 1345, 367296043199, 1331714, 37667521, 1136689, 1273319041, 39201, 72722761475561 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Define the silver mean constants h=1+sqrt(2) = A014176, h^2=1+2h = A156035, and 1/h=h-2. Let Phi(n,x) be the n-th cyclotomic polynomial A013595, so that x^n-1 = Product_{d | n} Phi(d, x). Let g(n) be the order of Phi(n, x), A000010. Then a(n)=(h-2)^g(n)*Phi(n, h^2) if n <> 2. The Binet representations of the Pell numbers yields: For even n, A000129(n) = Product_{d|n} a(d). For odd n, A000129(n)=Product_{ d|n} a(2d). For odd prime p, a(p)=A002203(p)/2, a(2p)=A000129(p). a(2^(k+1))=A002203(2^k). For odd n, A002203(n)=Product_{ d|n} a(d). For k>0 and odd n, A002203(n*2^k)=Product_{ d | n} a(d*2^(k+1)). LINKS Dan Kalman and Robert Mena, The Fibonacci Numbers: Exposed, Math. Mag. 76 (3) (2003) 167-181. EXAMPLE For even n=12, A000129(12) = a(1)*a(2)*a(3)*a(4)*a(6)*a(12) = 2*1*7*6*5*33 = 13860. For odd n=9, A000129(9) = a(2)*a(6)*a(18)= 1*5*197 = 985. For even n=8, A002203(12) = a(8)*a(24)=34*1153 = 39202. For odd n=21, A002203(21) = a(1)*a(3)*a(7)*a(21) = 2*7*239*32641 = 109216786. MAPLE A072280 := proc(n) if n <= 2 then 3-n ; else g := numtheory[phi](n) ; h := 1+sqrt(2) ; (h-2)^g*numtheory[cyclotomic](n, h^2) ; simplify(expand(%)) ; end if; end proc: seq(A072280(n), n=1..80) ; # R. J. Mathar, Nov 27 2009 CROSSREFS Cf. A000129, A002203. Sequence in context: A246751 A295850 A078104 * A217106 A086054 A256392 Adjacent sequences:  A072277 A072278 A072279 * A072281 A072282 A072283 KEYWORD nonn AUTHOR Miklos Kristof, Jul 10 2002 EXTENSIONS Edited and extended by R. J. Mathar, Nov 27 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 20 12:32 EST 2019. Contains 319330 sequences. (Running on oeis4.)