OFFSET
1,1
COMMENTS
Let Phi(n,x) be the n-th cyclotomic polynomial A013595, so that x^n-1 = Product_{d | n} Phi(d, x). Let g(n) be the order of Phi(n, x), A000010. Then a(n)=(h-2)^g(n)*Phi(n, h^2) if n <> 2.
The Binet representations of the Pell numbers yields:
For even n, A000129(n) = Product_{d|n} a(d).
For odd n, A000129(n)=Product_{ d|n} a(2d).
a(2^(k+1))=A002203(2^k).
For odd n, A002203(n)=Product_{ d|n} a(d).
For k>0 and odd n, A002203(n*2^k)=Product_{ d | n} a(d*2^(k+1)).
LINKS
Dan Kalman and Robert Mena, The Fibonacci Numbers: Exposed, Math. Mag. 76 (3) (2003) 167-181.
EXAMPLE
MAPLE
A072280 := proc(n) if n <= 2 then 3-n ; else g := numtheory[phi](n) ; h := 1+sqrt(2) ; (h-2)^g*numtheory[cyclotomic](n, h^2) ; simplify(expand(%)) ; end if; end proc:
seq(A072280(n), n=1..80) ; # R. J. Mathar, Nov 27 2009
MATHEMATICA
a[n_] := If[n <= 2, 3-n, g = EulerPhi[n]; h = 1 + Sqrt[2]; (h - 2)^g*Cyclotomic[n, h^2] // Expand];
Table[a[n], {n, 1, 80}] (* Jean-François Alcover, May 08 2023, after R. J. Mathar *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Miklos Kristof, Jul 10 2002
EXTENSIONS
Edited and extended by R. J. Mathar, Nov 27 2009
STATUS
approved