login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072280
Product representation of the Pell numbers A000129 and A002203.
5
2, 1, 7, 6, 41, 5, 239, 34, 199, 29, 8119, 33, 47321, 169, 961, 1154, 1607521, 197, 9369319, 1121, 32641, 5741, 318281039, 1153, 45245801, 33461, 7761799, 38081, 63018038201, 1345, 367296043199, 1331714, 37667521, 1136689, 1273319041, 39201, 72722761475561
OFFSET
1,1
COMMENTS
Define the silver mean constants h=1+sqrt(2) = A014176, h^2=1+2h = A156035, and 1/h=h-2.
Let Phi(n,x) be the n-th cyclotomic polynomial A013595, so that x^n-1 = Product_{d | n} Phi(d, x). Let g(n) be the order of Phi(n, x), A000010. Then a(n)=(h-2)^g(n)*Phi(n, h^2) if n <> 2.
The Binet representations of the Pell numbers yields:
For even n, A000129(n) = Product_{d|n} a(d).
For odd n, A000129(n)=Product_{ d|n} a(2d).
For odd prime p, a(p)=A002203(p)/2, a(2p)=A000129(p).
a(2^(k+1))=A002203(2^k).
For odd n, A002203(n)=Product_{ d|n} a(d).
For k>0 and odd n, A002203(n*2^k)=Product_{ d | n} a(d*2^(k+1)).
LINKS
EXAMPLE
For even n=12, A000129(12) = a(1)*a(2)*a(3)*a(4)*a(6)*a(12) = 2*1*7*6*5*33 = 13860.
For odd n=9, A000129(9) = a(2)*a(6)*a(18)= 1*5*197 = 985.
For even n=8, A002203(12) = a(8)*a(24)=34*1153 = 39202.
For odd n=21, A002203(21) = a(1)*a(3)*a(7)*a(21) = 2*7*239*32641 = 109216786.
MAPLE
A072280 := proc(n) if n <= 2 then 3-n ; else g := numtheory[phi](n) ; h := 1+sqrt(2) ; (h-2)^g*numtheory[cyclotomic](n, h^2) ; simplify(expand(%)) ; end if; end proc:
seq(A072280(n), n=1..80) ; # R. J. Mathar, Nov 27 2009
MATHEMATICA
a[n_] := If[n <= 2, 3-n, g = EulerPhi[n]; h = 1 + Sqrt[2]; (h - 2)^g*Cyclotomic[n, h^2] // Expand];
Table[a[n], {n, 1, 80}] (* Jean-François Alcover, May 08 2023, after R. J. Mathar *)
CROSSREFS
Sequence in context: A246751 A295850 A078104 * A217106 A329995 A086054
KEYWORD
nonn
AUTHOR
Miklos Kristof, Jul 10 2002
EXTENSIONS
Edited and extended by R. J. Mathar, Nov 27 2009
STATUS
approved